
S é m i n a i re s
 & C o n g rè s

C O L L E C T I O N S M F

SOCIÉTE MATHÉMATIQUE DE FRANCE

Numéro 26

OPERADS 2009

Jean-Louis Loday & Bruno Vallette, ed.

IMPLEMENTING GRÖBNER
BASES FOR OPERADS

Vladimir Dotsenko & Mikael Vejdemo Johansson

Séminaires & Congrès
26, 2011, p. 77–97

IMPLEMENTING GRÖBNER BASES FOR OPERADS

by

Vladimir Dotsenko & Mikael Vejdemo Johansson

Abstract. — We present an implementation of the algorithm for computing Gröb-
ner bases for operads due to the first author and A. Khoroshkin. We discuss the
actual algorithms, the choices made for the implementation platform and the data
representation, and strengths and weaknesses of our approach.

Résumé (Comment implémenter les bases de Gröbner pour les opérades). — Nous décrivons
comment implémenter l’algorithme, dû au premier auteur et à A. Khoroshkin, qui
calcule les bases de Gröbner pour les opérades. Nous étudions les algorithmes actuels,
les choix affectués pour les plateformes d’implémentation et pour la représentation
des données. Nous discutons aussi des forces et des faiblesses de notre approche.

1. Introduction

1.1. Summary of results. — In an upcoming paper [4], the first author and Anton
Khoroshkin define the concept of a Gröbner basis for finitely presented operads. In
that paper, they prove the diamond lemma, and demonstrate that for an operad,
having a quadratic Gröbner basis is equivalent to the existence of a Poincaré–Birkhoff–
Witt basis. As demonstrated by Eric Hoffbeck [5], an operad with a PBW basis is
Koszul. Hence, an implementation of the Gröbner bases algorithm yields, in addition
to a framework for exploration of operads by means of explicit calculation, a computer-
aided tool for proving Koszulness.

In this paper, we present an implementation of the Gröbner basis algorithm in the
Haskell programming language [10]. Being designed with categorical terms, Haskell
provides a powerful framework for algorithms like that. What we end up with is a
computer sofware package which allows to compute the Gröbner basis for a finitely
presented operad, as well as bases and dimensions for components of such an operad.

2000 Mathematics Subject Classification. — Primary: 68W30; Secondary: 16S15, 18D50, 68N18.
Key words and phrases. — Buchberger algorithm, Gröbner bases, Haskell, shuffle operads.

© Séminaires et Congrès 26, SMF 2011

78 VLADIMIR DOTSENKO & MIKAEL VEJDEMO JOHANSSON

One of the main goals of this paper is to help mathematicians who want to get
familiar with this software package and use it for their needs, including changing
some algorithms or adding more functionality.(1) Consequently, this is more of an
invitation to experiment with this software than a report on what it is possible to
compute. Let us comment briefly on the state of the art regarding computations.
While working on the package, we have implemented several well known operads to
test the performance. In the case when an operad is PBW, our package captures that
right away. This already is a very important achievement: having implemented many
different admissible orderings, one can check very fast whether or not an operad is
PBW for at least one of them, thus proving the Koszulness in many cases. Note that
the PBW property depends a lot not only on the choice of an admissible ordering,
but also on the choice of ordering of generators of our operad; for example, for the
operad of pre-Lie algebras, depending on the ordering, a Gröbner basis can vary from
quadratic to seemingly infinite. On the other hand, for operads that do not have a
quadratic Gröbner basis, we encountered subtle performance issues in many cases.
For operads having a relatively small finite Gröbner basis, like the fake commutative
operad AntiCom [4], the computation easily yields the correct result, while for many
other cases, like the pre-Lie operad for a “wrong” ordering, computations with arity 6

and further take enormously long.
The actual implementation is distributed through the HackageDB repository for

Haskell software projects at
http://hackage.haskell.org/package/Operads,

software distributed through this repository are available through the automated in-
stallation tool cabal-install.

The current documentation files are kept online at
http://math.stanford.edu/~mik/operads/.

1.2. Outline of the paper. — The paper is organized as follows. In Section 2, we recall
relevant background information related to operads and Gröbner bases, on one hand,
and to types and functions in Haskell, on the other hand. In Section 3, we discuss the
way we chose to represent our data in Haskell. In Section 4, we present algorithms
used in our implementation. Finally, in the appendix, we list Haskell constructions
used throughout the paper.

1.3. Acknowledgements. — We wish to express our deep gratitude to Eric Hoffbeck
and Henrik Strohmayer for both significant assistance in the construction of the soft-
ware code, and analysis of the techniques we are using. Some of the hairier points
of Haskell evaluation has been rendered clear by the helpful assistance of the many
members of the #haskell IRC channel on the Freenode IRC network.

(1) The first author is a living example proving that it is possible; having been introduced to Haskell
by the second author in the process of working on this package, he now has enough confidence to
not only use the package, but to add new functions as well.

SÉMINAIRES & CONGRÈS 26

http://hackage.haskell.org/package/Operads
http://math.stanford.edu/~mik/operads/

IMPLEMENTING GRÖBNER BASES FOR OPERADS 79

The first author was supported by an IRCSET research fellowship. The second
author was supported by the Office of Naval Research, through grant N00014-08-1-
0931.

We are grateful to Jean–Louis Loday and Bruno Vallette who organized the “Oper-
ads 2009” meeting in CIRM Luminy, where the work on this project was started. The
second author wishes to thank Dublin Institute for Advanced Studies which hosted
him as a visitor during the last stage of working on this paper.

2. Overview

For exhaustive information on symmetric operads, we refer the reader to mono-
graphs [8] and [9]. Here, we mainly concentrate on shuffle operads and their rela-
tionship with symmetric operads, and definitions in the symmetric case are chosen in
the way that best suits this approach.

2.1. Operads. — We denote by Ord the category of nonempty finite ordered sets (with
order-preserving bijections as morphisms), and by Fin — the category of nonempty
finite sets (with bijections as morphisms). Also, we denote by Vect the category of
vector spaces (with linear operators as morphisms; unlike the first two cases, we do
not require a map to be invertible).

Definition 1. — 1. A (nonsymmetric) collection is a contravariant functor from the
category Ord to the category Vect.

2. A symmetric collection (or an S-module) is a contravariant functor from the
category Fin to the category Vect.

For either type of collections, we can consider the category whose objects are
collections of this type (and morphisms are morphisms of the corresponding functors).
The natural forgetful functor f : Ord → Fin, I 7→ If leads to a forgetful functor f

from the category of symmetric collections to the category of nonsymmetric ones,
Pf (I) := P(If). For simplicity, we let P(k) := P([k]).

We use the convention [k] = {1, 2, . . . , k} in this paper.

Definition 2. — – Let P and Q be two nonsymmetric collections. Define their
shuffle composition P ◦sh Q by the formula

(P ◦sh Q)(I) :=
⊕
k

P(k)⊗

Ñ ⊕
f : I�[k]

Q(f−1(1))⊗ · · · ⊗Q(f−1(k))

é
,

where the sum is taken over all shuffling surjections f , that is surjections for
which min f−1(i) < min f−1(j) whenever i < j.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2011

80 VLADIMIR DOTSENKO & MIKAEL VEJDEMO JOHANSSON

– Let P and Q be two symmetric collections. Define their (symmetric) composi-
tion P ◦Q by the formula

(P ◦Q)(I) :=
⊕
k

P(k)⊗Sk

Ñ ⊕
f : I�[k]

Q(f−1(1))⊗ · · · ⊗Q(f−1(k))

é
,

where the sum is taken over all surjections f .

Each of these compositions gives a structure of a monoidal category on the category
of the corresponding collections. The same definitions can be given if we replace Vect

by another symmetric monoidal category. For our purposes, an important replacement
for Vect will be the category of finite sets (with arbitrary mappings as morphisms).

Definition 3. — 1. A shuffle operad is a monoid in the category of nonsymmetric
collections with the monoidal structure given by the shuffle composition.

2. A symmetric operad is a monoid in the category of symmetric collections with
the monoidal structure given by the (symmetric) composition.

Definition 4. — A shuffle permutation of the type (k1, . . . , kn) is a permutation in
the symmetric group Sk1+···+kn

which preserves the order of the first k1 elements, the
second k2 elements,. . . , the last kn elements, and satisfies

σ(1) < σ(k1 + 1) < σ(k1 + k2 + 1) < · · · < σ(k1 + · · ·+ kn−1 + 1).

Proposition 1. — The number of shuffle permutations of the type (k1, . . . , kn) is equal
to

k1k2 · · · · · kn
(k1 + k2 + · · ·+ kn)(k2 + · · ·+ kn) · · · · · kn

Ç
k1 + k2 + · · ·+ kn
k1, k2, . . . , kn

å
.

When implementing shuffle permutations, one can use the following simple idea:
In a shuffle permutation, the number whose image is k1 + · · ·+ kn should clearly be
the maximal one in its block. Moreover, if this block is of size 1, it should be the
last one to comply with the ordering condition on the first elements of blocks. This
implies an obvious recursive algorithm to generate a list of shuffle permutations with
given sizes of blocks: put the maximal image in the end of each allowed block, and for
each such choice list all shuffle permutations where the corresponding block contains
one element less than prescribed.

Definition 5. — 1. Let O be a shuffle operad, β ∈ O(n), α1 ∈ O(k1), . . . ,
αn ∈ O(kn). Assume that σ ∈ Sk1+···+kn

is a shuffle permutation of the type
(k1, . . . , kn). Denote by Bs, s = 1, . . . , n, the sth block of [k1 + · · · + kn] (on
which σ is monotonous). Then we define

β(α1, . . . , αn)σ = ◦(β ⊗ σ(α1)⊗ · · · ⊗ σ(αn)) ∈ O(k1 + · · ·+ kn),

where σ(αs) is the image of αs under the isomorphism between O(ks) and
O(σ(Bs)), and ◦ : O ◦sh O → O is the monoid product map.

SÉMINAIRES & CONGRÈS 26

