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OPEN PROBLEMS IN THE THEORY OF AMPLE FIELDS

by

Lior Bary-Soroker & Arno Fehm

Abstract. — Fifteen years after their discovery, ample fields now stand at the center
of research in contemporary Galois theory and attract more and more attention also
from other areas of mathematics. This survey gives an introduction to the theory of
ample fields and discusses open problems.

Résumé (Problèmes ouverts de la théorie des corps amples). — Quinze ans après leur décou-
verte, les corps amples se situent maintenant au cœur de la recherche contemporaine
en théorie de Galois et attirent de plus en plus l’attention de la part d’autres branches
des mathématiques. Ce travail présente une introduction à la théorie des corps amples
et traite de quelques problèmes ouverts.

1. Introduction

In the middle of the 1990’s, Pop realized that all fields for which a certain Galois the-
oretic conjecture was proven (namely the regular solvability of finite split embedding
problems) share a common property: the set of rational points of any smooth curve
over such a field is either empty of infinite. Moreover, in [Pop96] he showed that
the conjecture actually holds for all fields satisfying this property. Since then these
fields, nowadays called ample fields(1) – the topic of this survey – play a central role
in Galois theory.

There are several equivalent ways to define ample fields, and this notion captures
well the intuitive concept of a ‘large’ field. For example, the class of ample fields
subsumes several seemingly unrelated classes of large fields, like algebraically closed,
real closed, separably closed, and Henselian valued fields. A typical example of an
ample field that does not fall into any of these categories is the field of totally S-adic
numbers Qtot,S , S a finite set of places of Q – the maximal extension of Q in which
each place in S is totally split. For example, the field of totally real algebraic numbers,
which plays an important role in number theory, is of this kind.

(1) Some authors prefer the term large field.
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2 LIOR BARY-SOROKER & ARNO FEHM

In recent years, ample fields attracted more and more attention also in other sub-
jects, like arithmetic geometry [Dèb98, Kol99, MB01, FP10], valuation theory
[Kuh04, AKP11], and model theory [Koe02, Tre05, JK10].

In this note we survey the basics of the theory of ample fields and discuss open
problems. The Galois-theoretic aspects of the theory of ample fields are covered well
in the literature, and we refer the reader to the beautiful survey paper [DD99] of
Dèbes and Deschamps, and the comprehensive book [Jar11] by Jarden. We will
focus on new developments that took place since the publication of [DD99], and on
connections between the theory of ample fields and other subjects.

2. Background

2.1. Characterization. — Apart from being given different names (like large, anti-
Mordellic, fertile, pop) there are also several equivalent ways to define the class of
ample fields, cf. [Pop96]:

Proposition 2.1. — The following properties for a field K are equivalent:
(1) Every smooth K-curve with a K-rational point has infinitely many such points.
(2) If V is a smooth K-variety, then the set of K-rational points of V is either

empty or Zariski-dense in V .
(3) K is existentially closed in the field of formal Laurent series K((t)).
(4) K is existentially closed in some field extension that admits a nontrivial

Henselian valuation.

Here, K is called existentially closed in an extension F if every existential first-
order sentence in the language of rings with parameters from K which holds in F ,
also holds in K. Equivalently, K is existentially closed in F if for any x1, . . . , xn ∈ F
there exists a K-homomorphism from the ring K[x1, . . . , xn] to K. An ample field
is a field K that satisfies the equivalent conditions (1)-(4).

2.2. Ample and non-ample fields. — The most important known properties of fields
that imply ampleness can be grouped into three classes:

1. arithmetic-geometric
2. topological
3. Galois-theoretic
Arithmetic-geometric properties: Every algebraically closed, separably closed, and

more generally, pseudo algebraically closed field, is ample. Here, a field K is called
pseudo algebraically closed (PAC, see [FJ08]) if every absolutely irreducibleK-variety
has a K-rational point. Even more generally, fields that satisfy a geometric local-
global principle for varieties are ample, [Pop96]. An example of such fields are the
PSC fields: If S is a finite set of places of Q, then a field K ⊆ Qtot,S is called PSC if
every smooth Q-variety that has a point over Qp for each p ∈ S (with Q∞ = R) has
a K-rational point.
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Topological properties: Every field which is complete with respect to a nontrivial
absolute value is ample. Also, every field which admits a nontrivial Henselian valua-
tion is ample. This can be generalized further to the quotient fields of domains that
are complete (more generally Henselian) with respect to an ideal [Pop10], or a norm
[FP11].

Galois-theoretic properties that imply ampleness are discussed in Section 4.
On the other side, there are three basic classes of non-ample fields:
1. finite fields
2. number fields, i.e. finite extensions of Q
3. function fields, i.e. fields that are a finitely generated and transcendental exten-

sion of another field
In particular, all global fields are non-ample, in contrast to the fact that all local

fields are ample. Apart from these three classes, only very few non-ample fields are
known. As Dèbes puts it in [Dèb98]:

“[...] it happens to be difficult to produce non-ample fields at all (at least inside
Q̄ and apart from number fields)”.

For some examples of non-ample fields that do not fall into any of the above three
classes see [Koe04, LR08, Feh11]. Surprisingly, to the best of our knowledge, all
infinite non-ample fields appearing in the literature are Hilbertian.

2.3. Properties. — As explained before, the notion of ample fields captures very well
the intuitive concept of a large field. One of the properties every notion of large fields
should certainly satisfy is the following, cf. [Pop96]:

Proposition 2.2. — The class of ample fields is closed under algebraic extensions.

In addition we have:

Proposition 2.3. — The class of ample fields is an elementary class. In particular, it
is closed under elementary equivalence in the language of rings.

2.4. Abelian varieties. — Let A be an abelian variety defined over a finitely generated
field K. It is known that the Mordell-Weil group A(K) is finitely generated, and in
particular

rank(A(K)) := dimQ(A(K)⊗Q),

the rank of A over K, is finite. On the other hand, if K is algebraically closed and
not algebraic over a finite field, then rank(A(K)) =∞. At least in characteristic zero,
this holds more generally for arbitrary ample fields, cf. [FP10]:

Proposition 2.4. — Let K be an ample field of characteristic zero and A/K a non-zero
abelian variety. Then rank(A(K)) =∞.

Although one can construct a non-ample field over which every abelian variety has
infinite rank (i.e. the converse of Proposition 2.4 does not hold), we do not know any
natural example of this kind, and none which is algebraic over Q.
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4 LIOR BARY-SOROKER & ARNO FEHM

3. Algebraic fields

We denote by Qab the maximal abelian extension of Q, which, by the Kronecker-
Weber theorem, coincides with the maximal cyclotomic extension Q(ζn : n ∈ N) of
Q.

3.1. — Our first question can be simply stated as follows.

Question I. — Is Qab ample?

The importance of this question lies in the fact that, via Pop’s results on ample
fields, a positive answer would give a proof of the following conjecture of Shafarevich,
cf. [DD99]:

Conjecture 3.1 (Shafarevich). — The absolute Galois group GQab
of Qab is a free profi-

nite group.

As evidence for this conjecture one has Iwasawa’s theorem that the maximal pro-
solvable quotient of GQab

is prosolvable free, and Tate’s result that the cohomological
dimension of GQab

is 1. Another piece of evidence is that the geometric Shafarevich
conjecture – the analogue of the Shafarevich conjecture for global function fields –
holds true, [Har95, Pop95]. A proof of Conjecture 3.1 could be seen as a step to-
wards understanding the absolute Galois group of Q, since GQ is an extension of the
well-known group Gal(Qab/Q) ∼= Ẑ× by GQab

.

3.2. — It is interesting to note that it is even unknown whether the bigger field Qsolv,
the maximal solvable Galois extension of Q, is ample. Even worse, while Frey proved
that Qab is not PAC, [FJ08, Corollary 11.5.7], it is a long-standing open question
whether Qsolv is PAC, equivalently, whether every absolutely irreducible Q-variety
admits a solvable rational point.

The ampleness of Qtot,S mentioned in the introduction follows from the fact that
Qtot,S is PSC, [MB89, GPR95]. This fact plays an important role in the study
of potential modularity of Galois representations, which motivated Taylor to ask in
[Tay04] whether also Qtot,S ∩ Qsolv is PSC. A positive answer to this would have
“extremely important consequences”, as he points out, and of course it would imply
that Qtot,S ∩Qsolv and consequently also Qsolv are ample.

3.3. — A positive answer to Question I would also settle the following problem. In
their 1974 paper [FJ74], Frey and Jarden investigate the rank of elliptic curves over
certain fields which are not finitely generated. For example, they prove that any
elliptic curve E/Q acquires infinite rank over the field Q(

√
n : n ∈ Z), so in particular

rank(E(Qab)) =∞. This led them to ask for a generalization of this result to arbitrary
abelian varieties:

Question 3.2 (Frey-Jarden). — Is rank(A(Qab)) =∞ for every non-zero abelian vari-
ety A over Q?
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