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Abstract. — After explaining the problem and the results in a short survey of joint
work with M-H. Saito and work by K. Okamoto on the geometry of Painlevé equa-
tions, two special families of linear differential equations, related to the equations
PI, PIII(Dsg), are studied in detail. Fine moduli spaces are constructed and identified
with Okamoto—Painlevé spaces. The universal property of the moduli spaces implies
the Painlevé property for these equations.

Résumé (Familles d’équations différentielles linéaires et les équations de Painlevé)

Nous présentons rapidement le probléme étudié et les résultats obtenus sur la
géométrie des équations de Painlevé, par ’auteur et M—H. Saito d’une part, et par
K. Okamoto d’autre part. Ensuite, deux familles spéciales en relation avec PI et
PIII(Dsg) sont étudiées en détail. On construit des espaces de modules fins et on les
identifie aux espaces d’Okamoto—Painlevé. La propriété universelle de ces espaces de
modules entraine la propriété de Painlevé pour les équations PI et PIII(Dg).

Introduction

It is well known that isomonodromic families of linear differential equations
induce solutions of Painlevé equations. A systematic study of these families and the
corresponding monodromy spaces is the theme of [vdP-Sa]. Let a finite subset A
of P! = CU{oc} and a map r : A — Qx> be given. Consider the set S (of the
isomorphy classes) of the differential modules M over C(z) satisfying:

(i) dim M = 2 and A2M is the trivial module,
(ii) A is the set of singular points of M and r(a) is the Katz invariant of M at the
point a.

2010 Mathematics Subject Classification. — MSC2000: 14D20,14D22,34M55.
Key words and phrases. — Moduli space for linear connections, Irregular singularities, Stokes matrices,
Monodromy spaces, Isomonodromic deformations, Painlevé equations.

© Séminaires et Congrés 27, SMF 2012



204 MARIUS VAN DER PUT

Associated to the data (A,r) there is a moduli space R, called the monodromy
space, which describes the analytic data, i.e., the ordinary monodromy, the Stokes
maps and the links. There is also a space P of parameters, e.g., eigenvalues of
the formal monodromies. The map R — P is a morphism between affine complex
varieties.

The Riemann—Hilbert map RH : S — R associates to a given module M € S its
analytic data, i.e., a point of R. A priori, S has no structure of algebraic variety.
However, a preliminary structure of algebraic variety can be given to at least a subset
of S, by representing a suitable M € S by a matrix differential operator of the form
44 (o _l;) for certain rational functions a,b, ¢ (see [vdP-Sa]).

One requires that the fibers of RH : S — R have dimension 1. This leads to the
ten cases for (A, r) of the following table.

Dynkin | Painlevé eqn || 7(0) | (1) | r(co0) | r(t) | dim P
Dy PVI 0 0 0 0 4
Ds PV 0 0 1 - 3
Dg PVgeg (Do) 0 0 1/2 - 2
Dg PIII(Dg) 1 - 1 - 2
Dy PIII(D7) 1 - 1/2 - 1
Dg PIII(Dg) 1/2 | - 1/2 - 0
Es PIV 0 - 2 - 2
Er PII 0 - 3/2 - 1
E; PII - - 3 - 1
Eg PI - - 5/2 - 0

The first row is the classical example by Schlesinger and Fuchs. Six of the remaining
nine rows are known by Garnier, Fuchs, Jimbo, Miwa, Ueno, Flaschka, Newell et
al. ([JMU, JM]). The three new rows were more recently found by Ohyama and
Okumura, [OO].

The second column gives the associated Painlevé equation. The first column
indicates the structure of Okamoto’s space of initial conditions. Explicit calculations
[vdP-Sa| show that R — P is a family of affine cubic surfaces.

The aim of this paper is to construct a fine moduli space M over C such that S
coincides in a natural way with M(C). Here we develop this theme for the families
(=,—,5/2) and (1/2,—,1/2). The universal property of the fine moduli space implies
the Painlevé property. It turns out that these fine moduli spaces M are the Okamoto—
Painlevé space of the corresponding equations PI, PIII(Dsg).

In a sequel to this paper ([vdP2|) we construct fine moduli spaces for the
two families (0,—,3/2) and (—,—,3). As one may expect, these spaces are again
Okamoto—Painlevé spaces and the Painlevé property is proven for all PII equations.
In another sequel to this paper, the families (1,—,1/2) and (1,—,1), related to
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PIII(D7) and PIII(Dg), are studied.

Proving the Painlevé property for the Painlevé equations has been the subject of
much research. Major results are by M. Hukuhara [OT], B. Malgrange [Mall, Mal2],
M. Jimbo, T. Miwa and K. Ueno [JMU, JM, Miw]. The problem is recently solved
according to [C], [GLS].

For the convenience of the reader we summarize (with a slight change of ter-
minology) some facts on Okamoto—Painlevé spaces that we will need and refer to
[O1, O2, O3, OKSO] and [In, IIS1, IIS2, IISA, STT, S-Ta, STe| for more
details.

Fix a Painlevé equation P, and fix its parameters. An Okamoto—Painlevé space
for P, is a tuple (E,w,B,F) where 7 : E — B is an analytic fibration, the base
B is 1-dimensional, non singular and simply connected. F is a foliation on E with
1-dimensional leaves. One poses the following conditions:

The leaves are the solutions of P, (more precisely the solutions of the Hamiltonian
system of P,). Every leaf F, is transversal to the fibers of 7 and the restriction
Fo — B of 7 to every leaf F, is an isomorphism.

(In the later paper [OKSO] the base space B is connected but not necessarily simply
connected. The last condition is replaced by: the restriction F, — B of 7 to every
leaf F, is an unramified covering).

The fibers of w : E — B are analytically isomorphic and the space of the initial
conditions denotes a fiber.

Okamoto constructs an Okamoto—Painlevé space for each P, under the assumption
that P, has the Painlevé property. This property can be stated here as: Every
local meromorphic solution of P, extends to a meromorphic solution on the universal
covering B of the space T of the values of ¢, where the equation P, has no singularity.

The terminology ‘space of initial conditions’ can be explained as follows. Suppose
for convenience that B = T. For a fixed to € T, the fiber m~1(ty) meets every leaf
Fo with multiplicity one. Thus 7~ !(to) coincides with the collection of the local
meromorphic solutions for P, at tg.

We make this explicit for P I ¢ = 6¢? 4+ 2t and P II ¢" = 2¢® + tq + a.
At a point tg we consider all meromorphic solutions. The holomorphic solutions are
uniquely determined by the initial values q(¢o), ¢’ (tp). But there are also solutions
with poles.

For P I (t—to) = 2(t—t0)®> — 2(t — to)® + h(t — to)* + >, o.cn(t — to)" with h
arbitrary and ¢, polynomials in h.

For P II there are two types
(t—to) ' =R (t—to) — L (t—to)? +h(t—t0)> + > ,o5cn(t —to)" with h arbitrary and
¢, polynomials in h.

—(t—to) "+ (t—to) — 27 (t—to)® + h(t —t0)® + 3,25 cn(t — to)™ with h arbitrary
and ¢, polynomials in h.
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In the above examples 7~ !(¢g) is the union of C? and one or two lines.

The space of initial conditions has, by Okamoto’s construction, the form S\ Y
(depending on the choice of b € B), where S is a complete surface and Y is a divisor.
One calls (S,Y) an Okamoto—Painlevé pairs of non fiber type. The surface S is
obtained by blowing up nine points (allowing for infinitely near points) of P? which lie
on a single curve C C P? of degree three (or, equivalently, one blows up eight points
on the Hirzebruch surface ¥3). Further Y C § is the unique anti-canonical divisor of
S. The configuration of the irreducible components of Y for the Okamoto—Painlevé
pairs of non fiber type does not depend on the choice of b € B and are given by the
eight extended Dynkin diagrams Dy, D5, Dg, D7, Dg, Eg, Eq, Es.

The method that we follow can be called ‘The Riemann—Hilbert Approach’. Some
of our results have parallels in [F], especially Chapters 5,6 and also in [OKSO)].

1. The family (—, —,5/2)

S denotes the set of the isomorphy classes of the differential modules M over C(z)
satisfying: (i) dim M = 2 and A2M is the trivial module,
(ii) M has only at oo a singular point and r(co0) = 5/2.
After changing the global variable z one may suppose that the formal module
C((27/?)) ® M is represented by the matrix differential operator z-+ + (*_) with
w= 252+ Lz1/2,

The aim is to construct a connection V : V — Q(4[occ]) ® V which has a given
M € S as generic fiber. Thus V is a vector bundle of rank two with M as space of
generic sections and V i coincides on M with the given derivation d on M. The

completion of the stalk of V at oo, namely Vs, is a C[[z~}]]-lattice in C((z71)) ® M,
invariant under 2729 (with 9 = V%) or invariant under =34 (with ¢ = Vz%)‘ A
Cl[z71]]-lattice A C N := C((271)) ® M is called invariant if z735(A) C A.

On the other hand, any invariant lattice A C N determines a unique connection
(V,V) with V : ¥V — Q(4][oc]) ® V, generic fiber M and Vo, = A (see [vdP-Si], p.
176). Thus we need a classification of the invariant lattices of N := C((271)) ® M.

1.1. A local computation. — Let N be a differential module over C((271)) such that
C((z='/?)) ® N has a representation by the matrix differential operator oy := § +
(8”_0) with w = 2% + £L21/2 and § = 2L. As before, a lattice A C N over C[[z™!]]
is called invariant if A is invariant under z=3dy.

For an invariant lattice A, the lattice A%2(A) C A?N = (C((271)), 2L ) has a basis
ba such that dby = mbp with m € Z. The integer m(A) := m depends only on A and
ba is unique up to multiplication by an element in C*.
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