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Abstract. — This paper is essentially a survey of André’s theory of pure motivated
motives with an emphasis on specialization theory in characteristic zero. We re-
view first the classical construction of pure motives and then turn to pure motivated
motives whose construction is modeled upon the one of pure homological motives,
replacing homological cycles by motivated cycles. Basically, motivated cycles are ob-
tained from homological cycles by adjoining formally the Lefschetz involution so that
the so-called standard conjectures become true in the category of pure motivated
motives; in particular, this category is a semisimple Tannakian category naturally
equipped with fibre functors coming from Weil cohomologies. The last section is
devoted to the `-adic version of André’s specialization theorem for motivated cycles,
which asserts that, given a family of motivated motives M over a scheme S of finite
type over a finitely generated field k of characteristic 0, the locus of all s ∈ S(k)

where the motivated motivic Galois group associated with Ms degenerates is thin in
S(k). When S is a curve, we improve André’s statement by resorting to a uniform
open image theorem for `-adic cohomology proved by A. Tamagawa and the author.
We conclude by some applications of this specialization theorem.

Résumé (Spécialisation des cycles motivés). — Cet article est une introduction à la théorie
des motifs motivés purs développée par André. Nous nous intéressons plus particu-
lièrement au problème de la spécialisation de ces motifs en caractéristique 0. Nous
commençons par rappeler la construction classique des motifs purs puis nous présen-
tons la construction des motifs purs motivés comme une variante de la construction
des motifs purs homologiques où les cycles homologiques sont remplacés par les cycles
motivés. En gros, les cycles motivés sont obtenus en adjoignant formellement l’involu-
tion de Lefschetz aux cycles homologiques de sorte que les conjectures dites standard
deviennent vraies dans la catégorie des motifs purs motivés; en particulier, cette ca-
tégorie est une catégorie tannakienne semisimple naturellement munie de foncteurs
fibres provenant des cohomologies de Weil considérées. La dernière partie de cet ar-
ticle est consacrée à la version `-adique du théorème d’André sur la spécialisation des
cyces motivés. Celui-ci peut s’énoncer comme suit. Soit k un corps de type fini et
de caractéristique nulle, S un schéma de type fini sur k et M une famille de motifs
motivés sur S. Alors l’ensemble des points s ∈ S(k) où le groupe de Galois motivé
motivique associé à Ms dégénère est mince dans S(k). Lorsque S est une courbe, nous
améliorons le résultat d’André en invoquant un théorème d’image ouverte uniforme
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26 ANNA CADORET

du à A. Tamagawa et l’auteur. Nous concluons en donnant quelques applications de
ce théorème de spécialisation.

1. Introduction

Classically, (pure) motives can be presented either as an attempt to construct a
universal cohomology or as an attempt to ”embed” the category of smooth projective
varieties into a neutral semisimple Tannakian category over a field E. Both points
of view are intrinsically connected but we will rather adopt the second one, which is
more adapted to André’s theory of motivated motives.

Recall that a neutral Tannakian category over a field E is a rigid abelian tensor
category which admits a faithful tensor functor with value in the category of finite
dimensional E-modules. The main theorem of Tannakian formalism asserts that a
neutral Tannakian category is equivalent to the category of finite dimensional E-
rational representations of a pro-algebraic group over E (pro-reductive if the category
is furthermore assumed to be semisimple).

Fix a field k of characteristic 0 and let P(k) denote the category of smooth, pro-
jective schemes over k and P(k)op its opposite category. These are tensor categories.
The first step of the construction of pure motives is to ”embed” P(k)op into an ad-
ditive tensor category - this is the category of homological correspondences. Once
one has an additive tensor category, one can, in turn, ”embed” it into its Karoubian
enveloppe, which is a pseudoabelian tensor category - this is the category of effective
motives. The third step consists in inverting formally the so-called Lefschetz motive
to obtain the category of pure motives, which is a rigid pseudoabelian tensor category.
The category of pure motives, however, is not Tannakian yet and, unfortunately, the
remaining part of the construction is only conjectural, based on the so-called stan-
dard conjectures. These conjectures are all implied by the so-called Lefschetz type
conjecture, which predicts that the Lefschetz involution is a morphism in the category
of pure motives.

The key idea of André’s construction of motivated cycles is to adjoin formally the
Lefschetz involutions to the set of homological correspondances in order to force Lef-
schetz conjecture to hold and construct a category of motives which is a semisimple
neutral Tannakian category - the category of pure motivated motives. In particular,
to any X ∈ P(k) one can associate the tensor subcategory 〈X〉⊗ generated by X in
the category of pure motivated motives; this is again a semisimple neutral Tannakian
category and its Galois group Gmot(X) is a reductive algebraic group.

Now, given a scheme S, smooth, separated and geometrically connected over k
with generic point η and a smooth projective morphism f : X → S with geomet-
rically connected fibres, one can ask how the categories 〈Xs〉⊗ vary with s ∈ S or,
equivalently, how the Gmot(Xs) do. This problem is dealt with in [A96, §5].

First, one has to find a way to compare 〈Xs〉⊗ and 〈Xη〉⊗, s ∈ S. Using the
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semisimplicity of the category of pure motivated motives and Deligne’s fixed part
theorem, one can show that the specialization isomorphism for `-adic cohomology

sps :
⊕
i≥0

H2i(Xη,Q`)(i)→̃
⊕
i≥0

H2i(Xs,Q`)(i)

maps motivated cycles to motivated cycles (corollary 4.7). So, as motivated motivic
Galois groups are reductive, one can identify Gmot(Xs) with a subgroup of Gmot(Xη)

and equality holds if and only if the specialization morphism for `-adic cohomology
induces an isomorphism onto motivated cycles for all fibre power X×kX×k · · ·×kX.

The next natural question is to understand the structure of the set of all s ∈ S
such that Gmot(Xs) ( Gmot(Xη); André’s specialization theorem for motivated cycles
answers it, at least partially.

Theorem 1.1. — ([A96, Thm. 5.2]) For any finite field extension k′/k the set of all
s ∈ S(k′) such that

Gmot(Xs) ( Gmot(Xη)

is thin in S(k′).

The proof is along the following guidelines. First, one observes that Gmot(Xs)

contains an open subgroup of the image Gs of the `-adic Galois representation

ρf,s : Γk(s) → GL(H∗(Xs,Q`)).

As a result, the degeneration of Gmot(Xs) forces the degeneration of Gs. Similarly,
Gmot(Xη) contains an open subgroup of the image G of the generic `-adic Galois
representation

ρf,η : Γk(η) → GL(H∗(Xη,Q`))

and identifying H∗(Xη,Q`) and H∗(Xs,Q`) via

sps :
⊕
i≥0

H2i(Xη,Q`)(i)→̃
⊕
i≥0

H2i(Xs,Q`)(i),

one can regard Gs as a closed subgroup of G. So, the set where Gmot(Xs) ( Gmot(Xη)

is contained in the set where Gs is not open in G. The problem thus amounts to study-
ing this second set.

To control this second set, André resorts to a profinite variant of Serre’s irreducibil-
ity theorem [Se89, p.148]. When S is a curve, this can be replaced by a uniform open
image theorem for `-adic representions of étale fundamental groups proved by A. Tam-
agawa and the author ([CT09b, Thm. 1.1] - see theorem 5.3) to obtain the following.
Given an integer d ≥ 1, let S≤d denote the set of all closed points s ∈ S such that
[k(s) : k] ≤ d.

Theorem 1.2. — Assume that S is a curve and that k is a finitely generated field
of characteristic 0. Then, for any integer d ≥ 1, the set of all s ∈ S≤d such that
Gmot(Xs) ( Gmot(Xη) is finite.
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28 ANNA CADORET

The paper is organized as follows. In section 2, we review the construction of the
category of pure motives (after some preliminaries - gathered in subsection 2.1 - about
algebraic cycles and Weil cohomologies) and, in section 3, we discuss the formalism
of the standard conjectures. In section 4, we give the main features of André’s theory
of motivated cycles and explain how to specialize them. Section 5 is devoted to the
statement and proof of the specialization theorem for motivated motivic Galois groups
(theorem 5.1, which gathers theorem 1.1 and 1.2). We conclude this last section by
discussing related topics such as jumping of the Neron-Severi rank or Tate conjectures.

It goes without saying that I am very much indebted to the reading of André’s
works [A96] and [A04] for the writing of this paper. I am also grateful to the referee
for his or her constructive remarks.

2. The category of pure motives

2.1. Algebraic cycles and Weil cohomologies. — The aim of this preliminary section
is to review the formalism of algebraic cycles and Weil cohomologies required to
introduce the category of algebraic correspondences, which is the starting point of
the construction of the category of pure motives. The content here is very standard
and can be skipped by any reader familiar with these notions. We assume basic
knowledge about intersection theory [F84], usual Weil cohomologies (say Betti and
`-adic) and Tannakian formalism [DM82].

Given a field K, we write Mod/K for the category of K-modules, ModZ≥0

/K for the

category of Z≥0-gradedK-modules, AlgZ≥0

/K for the category of Z≥0-gradedK-algebras

and AAlgZ≥0

/K for the category of anticommutative Z≥0-graded K-algebras regarded as
a ⊗-category whose commutativity constraint is given by Koszul rule that is, for any
two Z≥0-graded algebras M = ⊕i≥0Mi, N = ⊕i≥0Ni, the commutativity constraint

cM,N : M ⊗K N→̃N ⊗K M

can be written as
cM,N =

⊕
i,j≥0

ci,j ,

where
ci,j : Mi ⊗K Nj →̃ Nj ⊗K Mi

mi ⊗ nj 7→ (−1)ijnj ⊗mi

, i, j ≥ 0.

Fix a field k, of characteristic 0.

Given a connected X ∈ P(k), we will write dX for its dimension. Some statements
involving dX below only make sense if X is equidimensional. We will not necessarily

SÉMINAIRES & CONGRÈS 27


