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NOTE ON TORSION CONJECTURE

by

Anna Cadoret & Akio Tamagawa

Abstract. — In this note, we give an elementary and effective proof of the fact that
the torsion conjecture for jacobian varieties implies the torsion conjecture for abelian
varieties.

Résumé (Note sur la conjecture de la torsion). — Nous prouvons de manière élémentaire
et effective que la conjecture de la torsion pour les variétés jacobiennes implique la
conjecture de la torsion pour les variétés abéliennes.

1. Introduction

The classical torsion conjecture for abelian varieties over number fields can be
stated as follows.

Conjecture 1.1. — Let d ≥ 0 be an integer then:

- (Weak form): Given a number field k, there exists an integer N := N(k, d) ≥ 0

such that for any d-dimensional abelian variety A over k, one has:

A(k)tors ⊂ A[N ].

- (Strong form): Given an integer δ ≥ 1, there exists an integer N := N(δ, d) ≥ 0

such that for any number field k of degree ≤ δ and any d-dimensional abelian
variety A over k, one has:

A(k)tors ⊂ A[N ].
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58 ANNA CADORET & AKIO TAMAGAWA

Completing a body of works initiated by B. Mazur in the mid-1970’s [Ma77], L.
Merel achieved a proof of the d = 1 case of the strong torsion conjecture in the mid-
1990’s [Me96]. But the d > 1 case remains widely open though recent results of the
authors show that the strong torsion conjecture for the p-primary part of the torsion
holds for d-dimensional abelian varieties parametrized by curves [CT09].

The aim of this note is to give a proof of the following statement, which, in particu-
lar, shows that the torsion conjecture for abelian varieties is equivalent to the torsion
conjecture for jacobian varieties.

Theorem 1.2. — Let d > 0 be an integer. Then there exists an integer g(d) > 0 satis-
fying the following property: For any infinite field k and any d-dimensional principally
polarized abelian variety A over k there exists a smooth, geometrically connected curve
C ↪→ A of genus gC ≤ g(d) that induces a smooth surjective homomorphism with con-
nected kernel JC|k → A and a closed immersion A→ JC|k of abelian varieties.

More precisely, one may take C ↪→ A of genus gC = g(d) with:

g(d) = 1 + 6d(d− 1)!
d(d− 1)

2
.

Note that if A is an arbitrary (i.e., a not necessarily principally polarized)
d-dimensional abelian variety over k then, by Zarhin’s trick, (A × A∨)4 is an 8d-
dimensional principally polarized abelian variety over k. In particular, to prove the
torsion conjecture for d-dimensional abelian varieties, it is enough to prove it for
g(8d)-dimensional jacobian varieties.

Roughly speaking, the curve C in the statement of theorem 1.2 is constructed by
cutting d− 1 times A by “nice” hyperplanes. For the proof of the crucial fact that C
can be chosen to have genus bounded only in terms of d, we give two different ap-
proaches in section 2 and section 3 respectively. The first approach given in section 2
is very elementary and relies on a certain explicit genus computation. More precisely,
in subsection 2.1, we show that given a smooth, geometrically connected projective
variety X over an infinite field k and a fixed embedding X ↪→ Pnk , the curves obtained
by cutting X by “nice” hyperplanes all have the same Hilbert polynomial, which
depends only on the Hilbert polynomial of X. We then compute in subsection 2.2
effectively the Hilbert polynomial of the resulting curves. The second approach given
in section 3 is more conceptual and relies on the theory of Hilbert schemes. More
precisely, in subsection 3.1 we show that given a scheme S and a closed subscheme
X ↪→ PnS smooth, geometrically connected and (purely) of relative dimension d > 0

over S there exists a surjective smooth morphism π : U → S of finite type and a
universal curve q : C ↪→ X ×S U → U such that any curve constructed in Xs by
cutting d − 1 times Xs by “nice” hyperplanes arises as the fiber of q at some h ∈ Us
(see proposition 3.1 for the precise statement). In subsection 3.2, we discuss the
representability of the Hilbert functor. In subsection 3.3, we combine these results to
recover the desired boundedness of the genus. Eventually, in section 4, we conclude
the proof of theorem 1.2 by resorting to a weak version of Lefschetz theorem and a
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NOTE ON TORSION CONJECTURE 59

duality argument.

Remark 1.3. — 1. If k is a finite field, one may still show that for any (positive-
dimensional) abelian variety A over k there exists a smooth, geometrically con-
nected curve C ↪→ A for which the assertions of theorem 1.2 hold. Indeed,
one has only to replace the classical hyperplane Bertini theorem by more re-
cent hypersurface Bertini theorems due to O. Gabber [G01, Cor. 1.6] and B.
Poonen [P04, Thm. 1.1] and note that lemma 4.1 also works for hypersurfaces.
However, the genus of the curve constructed by this method is uncontrolled in
Gabber’s method and depends on the poles of the zeta functions of the succes-
sive sections in Poonen’s method. So it is difficult to obtain a bound of the
genus independent of the finite base field as in theorem 1.2.

2. If the characteristic of k is 0, our proof of theorem 1.2 is entirely elementary and
classical. On the other hand, if the characteristic of k is positive, this argument
only shows that the morphism JC|k → A is surjective with connected kernel and
the morphism A→ JC|k is finite with kernel having connected Cartier dual. To
get the full statement in positive characteristic, we resort to [G01, Prop. 2.4],
which may be less elementary.

3. The problem of how to realize abelian varieties as quotients of jacobian varieties
is classical and the first proof of the fact that this can always be done (over an
algebraically closed field) seems to go back to [M52]. Other references include
[Mi86] and the already mentioned [G01].

We end this section by the following lemma, which is used in both of the two
approaches.

Lemma 1.4. — Let k be a field and A a d-dimensional abelian variety over k equipped
with a polarization λ : A → A∨ of degree δ2 (δ > 0). Let L denote the invertible
sheaf (idA, λ)∗(PA) on A, where PA is the normalized Poincaré sheaf on A×k A∨, so
that φL = 2λ [MF82, Chap.6, §2, Prop. 6.10], and that OA(1) := L⊗3 is very ample
relatively to A→ k [Mu70, III, §17] and induces a closed immersion A ↪→ Pnk . Then
the Hilbert polynomial P (T ) of A with respect to this embedding is given by:

P (T ) = 6dδT d.

In particular, P (T ) depends only on (d, δ).

Proof. This is stated in [MF82, Chap.7, §2] with a hint of proof. More explicitly,
from the Riemann-Roch theorem [Mu70, III, §16], one has:

χ(OA(n))2 = deg(φL⊗3n) = deg(3nφL) = deg(6nλ) = (6n)2ddeg(λ),

whence χ(OA(n)) = 6dδnd and P (T ) = 6dδT d. �
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60 ANNA CADORET & AKIO TAMAGAWA

2. First approach — Genus computation

2.1. General case. — Let k be an infinite field and let X0 ↪→ Pnk be a smooth, pro-
jective and geometrically connected variety of dimension d > 0 over k. If d − 1 > 0,
it follows from Bertini’s theorem [J83, I, Th. 6.10 and Th. 7.1] that there exists a
hyperplane H1 ↪→ Pnk such that X1 := X0 ×Pn

k
H1 is a smooth, geometrically con-

nected k-variety of dimension d−1. Iterating the process, one can construct a smooth
geometrically connected k-variety Xi of dimension d− i inductively for 0 ≤ i ≤ d− 1.
More precisely, one set Xi := Xi−1 ×Pn

k
Hi = X0 ×Pn

k
H1 ×Pn

k
· · · ×Pn

k
Hi. Also, let

OXi(1) denote the very ample invertible sheaf relatively to k induced by the projective
embedding Xi ↪→ Pnk . Then, one has the short exact sequences of OXi-modules:

0→ OXi(−1)→ OXi → OXi+1
→ 0.

Hence, tensoring by OXi(n):

0→ OXi(n− 1)→ OXi(n)→ OXi+1(n)→ 0,

from which it follows that Pi+1(T ) = Pi(T ) − Pi(T − 1), where Pi(T ) denotes the
Hilbert polynomial of Xi. A straightforward inductive computation then yields:

Pi(T ) =
∑

0≤k≤i

Ç
i

k

å
(−1)kP0(T − k).

And, in particular, one can compute the genus g(Xd−1) of Xd−1:

g(Xd−1) = dimk(H1(Xd−1,OXd−1
)) = 1−

∑
0≤k≤d−1

Ç
d− 1

k

å
(−1)kP0(−k).

Remark 2.1. — (Comparison with Castelnuovo’s bound) By construction, the curves
Xd−1 obtained by cutting out X by d− 1 hyperplanes all have the same degree as X
- say a. From Castelnuovo’s bound [ACGH85, p. 116], this implies that the genus
of Xd−1 is bounded from above by a constant

π(a, n) =
q(q − 1)

2
(n− 1) + qr,

where q and r denote the quotient and remainder of the euclidean division of a − 1

by n− 1 respectively.

2.2. The case of polarized abelian varieties. — We would like to apply the preceding
computation to a d-dimensional abelian variety X0 = A over k equipped with a degree
δ2 polarization λ : A→ A∨ (δ > 0). So, as in lemma 1.4, let L be the invertible sheaf
on A such that φL = 2λ, hence OA(1) := L⊗3 is very ample relatively to A→ k and
induces a closed immersion A ↪→ Pnk . Now, by lemma 1.4, the Hilbert polynomial
P0(T ) with respect to this embedding is given by: P0(T ) = 6dδT d. As a result:

g(Xd−1) = 1 + 6dδ(−1)d−1
∑

0≤k≤d−1

Ç
d− 1

k

å
(−1)kkd.
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