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Abstract. — This paper is a survey of anabelian aspects of the tempered fundamental
group of nonarchimedean analytic spaces. This tempered fundamental group classi-
fies analytic étale coverings that become topological coverings for Berkovich topology
after pullback by some finite étale covering. This article will focus on two aspects: a
nonarchimedean analog of Grothendieck-Teichmüller theory and a geometric interpre-
tation of compact subgroups of the tempered fundamental group and of a prime-to-p
version of the tempered fundamental group.

Résumé (Groupe fondamental tempéré). — Cet article est un survol des aspects anabéliens
du groupe fondamental tempéré des espaces analytiques non-archimédiens. Ce groupe
fondamental tempéré classifie les revêtements analytiques étales qui deviennent des
revêtements topologiques après changement de base étale fini. Nous nous concentre-
rons sur deux aspects: un analogue non-archimédien de la théorie de Grothendieck-
Teichmüller et une interprétation géométrique des sous-groupes compacts du groupe
fondamental tempéré et d’une version première à p.

Introduction

For a complex algebraic variety, one can define a topological fundamental group
by considering the associated analytic space; its profinite completion can be iden-
tified with the algebraic fundamental group. Y. André defined in [2] an analog of
this topological fundamental group over nonarchimedean fields, called the tempered
fundamental group. However, the topological fundamental group of a complex curve
depends only of the genus of the curve, whereas the tempered fundamental group
of a curve depends much more on the curve itself, even in the geometric case. For
example, elliptic curves of good reduction and elliptic curves of bad reduction have
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non-isomorphic geometric tempered fundamental groups: in characteristic 0, the tem-
pered fundamental group is Ẑ2 in the case of good reduction, and Z× Ẑ in the case
of bad reduction. This paper sums up some anabelian aspects of the tempered fun-
damental group.

The tempered fundamental group is defined in terms of nonarchimedean ana-
lytic geometry. In this paper, the analytic setting will be expressed in terms of
Berkovich spaces. Defining a fundamental group simply by considering the topology
of a Berkovich space is not enough for our purposes: for example, the Berkovich
space of P1\{0, 1,∞} is contractible, whereas its algebraic fundamental group is big
enough—in the geometric case of characteristic 0, it is a free profinite group on two
generators—to have very deep arithmetic properties. J. de Jong, in [11], introduced
an étale fundamental group which classifies more general étale analytic coverings, and
in particular some p-adic period maps in the sense of Rapoport and Zink. In the case
of Lubin-Tate moduli spaces, studied by Gross and Hopkins in [9] and [8], one gets
non trivial étale coverings of projective spaces, so that the fundamental group of pro-
jective spaces in the sense of de Jong is much more complicated than its counterpart
in complex geometry. In this paper, we will focus on the tempered fundamental group
of André. This group is much smaller and simpler than de Jong’s fundamental group:
for curves, the tempered fundamental group is residually finite, so that the map to its
profinite completion—the algebraic fundamental group of Grothendieck—is injective.
The tempered fundamental group is defined as the classifying group of the category
of étale analytic coverings that become topological coverings after pullback by some
finite étale covering. There is a universal pro-tempered covering: it is given by the
projective system of universal topological coverings of the Berkovich space associated
to a cofinal family of pointed finite étale coverings.

In this paper, we will be interested in anabelian aspects of the tempered fundamen-
tal group: what can be recovered of a variety from its tempered fundamental group?
In arithmetic geometry, A. Grothendieck conjectured that a hyperbolic curve over a
number field only depends up to isomorphism of its arithmetic fundamental group.
More precisely, Grothendieck’s conjecture predicts that, if X1 and X2 are two curves
over a number field K, the map Isom(X1, X2) → OutIsomGK

(πalg
1 (X1,K , X2,K)) is

an isomorphism. This was proved by S. Mochizuki in [15]. In the tempered set-
ting, one could hope for such anabelian properties even with geometric tempered
fundamental groups, i.e. without restricting to equivariant isomorphisms of topo-
logical groups with respect to a Galois action. More precisely, a natural question
could be the following: if X1 and X2 are two hyperbolic Qp-curves, is the map
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IsomQp(X1, X2) → OutIsom(πtemp
1 (X1,Cp), πtemp

1 (X2,Cp)), given by functoriality of
the tempered fundamental group, a bijection?

Grothendieck-Teichmüller theory tries to describe the absolute Galois group in
terms of group of automorphisms of profinite fundamental groups of geometric objects.
If the answer to the question of the last paragraph was positive, in the caseX1 = X2 =

P1\{0, 1,∞}, one would get a very precise non-Archimedean version of Grothendieck-
Teichmüller theory: the absolute Galois group of Qp would be equal to the group of
outer automorphisms of P1\{0, 1,∞} which sends each of the monodromy groups to
a conjugate of itself. This is far from being known yet.

However, in [2], André started a non-Archimedean Grothendieck-Teichmüller the-
ory. More precisely, he proved that every automorphism of the absolute Galois group
of Q that induces an automorphism of πalg

1 (P1
Q
\{0, 1,∞}) which restricts to an auto-

morphism of πtemp
1 (P1

Q\{0, 1,∞}) is indeed in the absolute Galois group of Qp. By
looking at the tower of moduli spacesM0,r of curves of genus 0 with r ordered marked
points, one defines a profinite group called the Grothendieck-Teichmüller group, which
contains the absolute Galois group of Q. André defines in [2] a p-adic analog of the
Grothendieck-Teichmüller group, as a group of outer automorphisms of the geometric
tempered fundamental group of P1\{0, 1,∞}.

We are very far from knowing how to compute the geometric tempered fundamental
group of any hyperbolic curve over Cp. However, a prime-to-p version of the tempered
fundamental group, where p is the residue characteristic, is much easier to describe. In
particular, for a hyperbolic curve over Qp, S. Mochizuki gives in [17] a description of
the compact subgroups in terms of the graph of the stable reduction. More precisely,
there is a bijection between the set of conjugacy classes of maximal compact subgroups
of the prime-to-p tempered fundamental group and the vertices of the graph of the
stable reduction, and a bijection between the set of conjugacy classes of nontrivial
intersection of two different maximal compact subgroups and the set of edges of the
graph of the stable reduction. Thus one can recover the graph of the stable reduction
from the prime-to-p tempered fundamental group. For the full tempered fundamental
group, the maximal compact subgroups still appear as decomposition subgroups of
points of the Berkovich space.

In the first part, we will define the topological space associated by Berkovich to
an algebraic variety. We will recall that in the case of smooth curves, its homotopy
type is encoded in the graph of a semistable reduction. Finally we will define the
tempered fundamental group of an algebraic variety X as the projective limit of the
Galois groups of the universal topological covering of Y over X, when Y runs over
finite étale Galois coverings of X.
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In a second part, we will be interested in Grothendieck-Teichmüller theory. In
particular, we will sketch the proof that every automorphism of the absolute Galois
group of Q that induces an automorphism of πtemp

1 (P1
Q\{0, 1,∞}) is in the absolute

Galois group of Qp.

In the last part we will study the decomposition groups of Berkovich points of a
curve over Qp. First we will look at the images of these decomposition groups in the
prime-to-p tempered fundamental group. In particular we will sketch the proof of
the fact that one can recover the graph of the stable reduction of the curve from its
prime-to-p tempered fundamental group. In the end, we will study maximal compact
subgroups of the tempered fundamental group.

1. Tempered fundamental group

1.1. Berkovich analytification of algebraic varieties and curves. — Let K be a complete
nonarchimedean field. We will mostly be interested later on in the case whereK = Cp

(the norm will be chosen so that |p| = p−1 and the valuation so that v(p) = 1). In
this paper, all valuations have values in R ∪ {∞}.

If X is an algebraic variety over K, one can associate to X a topological set Xan

with a continuous map φ : Xan → X defined in the following way.

A point of Xan is an equivalence class of morphisms SpecK ′ → X over SpecK

where K ′ is a complete valued extension of K. Two morphisms SpecK ′ → X and
SpecK ′′ → X are equivalent if there exists a common valued extension L of K ′ and
K ′′ such that

SpecL //

��

SpecK ′′

��
SpecK ′ // X

commutes. In fact, for any point x ∈ Xan, there is a unique smallest such complete
valued field defining x: it is denoted by H(x) and is called the completed residue
field of x. Forgetting the valuation, one gets points SpecK → X from the same
equivalence class of points: this defines a point of X, hence the map Xan → X. If
U = SpecA is an affine open subset of X, every x ∈ φ−1(U) defines a seminorm | |x
on A. The topology on φ−1(U) is defined to be the coarsest one such that x 7→ |f |x
is continuous for every f ∈ A.

For example, if K is algebraically closed, a ∈ K and r ∈ R≥0, one gets a point
ba,r of the analytic affine line defined by |

∑
i ai(T − a)i|ba,r = maxi |ai|ri. However,

unless K is spherically complete, not all points are of this type.
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