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Abstract. — The large deviation multifractal spectrum is a function of central impor-
tance in multifractal analysis. It allows a fine description of the distribution of the
singularities of a function over a given domain. The 2-microlocal spectrum, on the
other hand, provides an extremely precise picture of the regularity of a distribution
at a point. These two spectra display a number of similarities: their definitions use
the same kind of ingredients; both functions are semi-continuous; the Legendre trans-
form of the two spectra yields a function of independent interest: the 2-microlocal
frontier in 2-microlocal analysis, and the "τ" function in multifractal analysis. This
paper investigates further these similarities by providing a common framework for the
definition and study of the spectra. As an application, we obtain slightly generalized
versions of the 2-microlocal and weak multifractal formalisms (with simpler proofs),
as well as results on the inverse problems for both spectra.

Résumé (Un cadre commun pour l’étude des spectres 2-microlocal et multifractal)
Le spectre de grandes déviations est un outil d’importance centrale en analyse

multifractale. Il permet une description fine de la répartition des singularités
d’une fonction. Le spectre 2-microlocal, quant à lui, fournit des renseignements
extrêmement fins sur la régularité d’une distribution en un point. Ces deux spectres
possèdent une certain nombre de caratéristiques communes : leur définition utilise
les mêmes types d’ingrédients ; les deux spectres sont des fonctions semi-continues ;
enfin, la transformée de Legendre des deux spectres conduit à des fonctions qui
présentent leur intérêt propre : la frontière 2-microlocale en analyse 2-microlocale, et
la fonction "τ" en analyse multifractale. Ce travail étudie et prolonge ces similarités
en fournissant une cadre d’étude commun pour l’analyse des deux spectres. Comme
application, nous obtenons des versions un peu plus générales que celles connues
dans la littérature concernant les formalismes multifractal et 2-microlocal (avec des
preuves plus simples), ainsi que des résultats sur les problèmes inverses pour les deux
spectres.
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1. Introduction and Background

The analysis of global regularity, classically based on the global Hölder exponent,
is adapted for the study of homogeneous signals. However, the global Hölder expo-
nent yields insufficient information when the regularity of a function evolves in “time”.
Studying such functions requires tools that allow to characterize their behaviour at
or around any point. One such tool is the pointwise Hölder exponent. We shall
denote αp(f, x0) the exponent of the function f at the point x0. Multifractal analy-
sis [FP85, AP96, BMP92, CLP87, EM92, Fan97, HJK+86, KP76, Jaf97a,
VT04, VV98, Man74, Ols95] studies the structure of the pointwise Hölder func-
tion, i.e. the function x0 → αp(f, x0): more precisely it aims at obtaining the mul-
tifractal spectrum, a function which measures the “size” of the level lines of αp(f, x).
Both the theoretical and the numerical computations of this spectrum are difficult.
This is why physicists and mathematicians have investigated a "multifractal formal-
ism", which allows, in certain situations, to obtain the spectrum as the Legendre
transform of a function that can be computed more easily.

Instead of focusing on the pointwise Hölder exponent and the fine structure of
αp(f, x0), one may follow a different approach and try to obtain a richer description
of the local regularity at any fixed point by means of other exponents, such as the
local Hölder exponent [GL98], the chirp exponent [Mey98], the oscillation expo-
nent [ABJM98] or the “weak scaling” exponent [Mey98]. A powerful way to do so
is to study the 2-microlocal frontier, defined in [GL98, Mey98] based on the local
version of the 2-microlocal spaces introduced by J.M. Bony in [Bon83]. The main
interest of these spaces is that they allow to describe completely the evolution of
the pointwise Hölder exponent at any given point under integro-differentiation. The
2-microlocal frontier is a curve in an abstract space that is associated to each point,
and that allows to predict this evolution. The 2-microlocal spaces were originally
defined through a Littlewood-Paley decomposition. They were then characterized by
conditions on the wavelet coefficients [Jaf91]. Time domain characterizations of in-
creasing generality have been provided in [KL02, LS04, Ech07]. See also [Mey98]
for related results.

The computation of the 2-microlocal frontier is somewhat delicate. A 2-microlocal
formalism has been studied in [GL98, LS04, Ech07], with an approach that is
analogous, in many respects, to the one of the multifractal formalism: at any fixed
point, the 2-microlocal frontier is the Legendre transform of a certain function called
the 2-microlocal spectrum.

Thus, for a function f , the multifractal spectrum characterizes the level sets of
the pointwise Hölder function, while the 2-microlocal spectrum allows to predict
the change of regularity by integro-differentiation at any point in the domain of f .
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These two descriptions yield a rather rich picture of the regularity, and they may be
approached through related formalisms, which are essentially based on a Legendre
transform.

In this work, we elaborate on the similitudes between the two formalisms. We also
study the problem of prescribing both the 2-microlocal and multifractal spectra. In
the next section, we expose some general notions that are useful in both settings.
In Section 3, we provide an abstract (weak) formalism. This formalism is applied
to various versions of the multifractal spectra in Section 4, and to the 2-microlocal
spectrum in Section 5. Finally, Section 6 presents results on the prescription of the
spectra.

Sections 2 and 3 stay at a very general level. As a consequence, the definitions
and results they present might appear rather abstract to the reader. However, as
will be apparent in Sections 4 and 5, they contain the essence of what is common to
the multifractal and 2-microlocal formalisms. In particular, propositions 4.1, 4.8, 5.2
and 5.3 may be seen as concrete examples of applications of this abstract formalism.
In fact, the results in Sections 2 and 3 elucidate the very mechanisms relating the
spectra, and might have applications in other settings.

2. Recalls: basic properties of functions defined on P(R)

We recall in subsections 2.1, 2.2 and 2.3 some known definitions and results on set
functions. In subsection 2.4, we specialize to a case which will be relevant for both
2-microlocal and multifractal analysis.

2.1. Common frame. — We consider a function F : P(R) → R = R ∪ {±∞}. F is
called non-decreasing if for all real sets E1, E2,

E1 ⊂ E2 ⇒ F (E1) ≤ F (E2).

It is called stable (with respect to union) if

F (E1 ∪ E2) = max{F (E1), F (E2)}.

Given a real k, F is k-stable if

F (E1 ∪ E2)− k ≤ max{F (E1), F (E2)} ≤ F (E1 ∪ E2) + k.

It is easily checked that any function G : P(R) → R that is non-decreasing and
sub-additive (i.e. G(E1 ∪ E2) ≤ G(E1) + G(E2)) is such that F := logG is k-stable
with k = log 2.
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2.2. Non-decreasing F . — Assume that F is non-decreasing. For all real α, the func-
tion F ([α− ε, α+ ε]) has a limit when ε tends to 0. One may then define the localized
function (also called max-plus limit).

F loc(α) = lim
ε→0

F ([α− ε, α+ ε]).

Lemma 2.1. — Let F be non-decreasing. For all open set O in R,

(2.1) sup
α∈O

F loc(α) ≤ F (O).

Proof. — Indeed, if α ∈ O, there exists ε such that [α − ε, α + ε] ⊂ O, and thus
F ([α− ε, α+ ε]) ≤ F (O).

Lemma 2.2. — If F is non-decreasing, then F loc is upper-semi-continuous.

Proof. — The preceding lemma implies that, for ε > 0, supβ∈(α−ε,α+ε) F
loc(β) ≤

F ((α− ε, α+ ε)). Letting ε tend to 0, one gets the semi-continuity of F loc in α.

Lemma 2.3. — If F is non-decreasing, then F loc reaches its supremum on any compact
set of R.

Proof. — This is a direct consequence of the semi-continuity.

2.3. Stability of F. — If F is stable, then it is also non-decreasing: indeed, if E1 ⊂ E2,

F (E1) ≤ max{F (E1), F (E2)} = F (E1 ∪ E2) = F (E2).

Lemma 2.4. — Let F be stable. For any compact set K in R,

(2.2) F (K) ≤ max
α∈K

F loc(α).

Proof. — The proof uses the closed dyadic intervals of R. Since K is bounded, it may
be covered by a finite number of dyadic interval of rank 0 (that is, of length 1). Since F
is stable, one of these intervals, denoted J0, is such that F (J0∩K) = F (K). However,
J0 is covered by two intervals of rank 1, say J ′ and J ′′. One of these intervals, denoted
J1, is also such that F (J1 ∩K) = F (K). By recurrence, one may construct a nested
sequence (Jn) of dyadic intervals such that, for all n, F (Jn ∩K) = F (K).

Let α∗ denote the limit of the Jn. Since K is closed, α∗ is a point of K. For
any ε > 0, there exists an integer n such that Jn ⊂ [α∗ − ε, α∗ + ε]. Using the
fact that F is non-decreasing, one gets that: F (Jn) ≤ F ([α∗ − ε, α∗ + ε]). Thus
F (K) ≤ F ([α∗ − ε, α∗ + ε]), and, letting ε tend to 0: F (K) ≤ F loc(α∗) . As a
consequence, F (K) ≤ supα∈K F

loc(α).
Finally, since F is non-decreasing, F loc reaches its supremum on K.
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