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Abstract
We construct a representation theory of a “quantum hyperboloid” in terms

of so-called braided modules. We treat these objects in the framework of
twisted Quantum Mechanics.

Résumé
Nous construisons une théorie de représentations pour « l’hyperboloïde

quantique » en termes de modules tressés. Nous traitons ces objets dans le
cadre de la mécanique quantique tordue.

1 Introduction

In the present paper we study a quantum hyperboloid from the point of view of the
generalized framework for quantum mechanics suggested in [GRZ]. The main idea
of that paper is the following. Quantizing a degenerate Poisson bracket we have, in
general, to modify the ordinary notions of quantum mechanics, namely, those of Lie
algebra, trace and conjugation (involution) operators.

Meanwhile, all objects and operators disscused in [GRZ] were connected to an
involutive S2 = id solution to the quantum Yang-Baxter equation (QYBE)

S12S23S12 = S23S12S23.

In particular, such objects arise as a result of a quantization of some Poisson brackets
(P.b.) generated by a skew-symmetric (R ∈ ∧2(g)) solution to the classical Yang-
Baxter equation (CYBE),

[[R,R]] = [R12, R13] + [R12, R23] + [R13, R23] = 0,

where g is a Lie algebra. Another family of examples of such a type of objects is
related to non-quasiclassical (or, in other words, non-deformational) solutions of the
QYBE, cf. [G1], [GRZ].
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More precisely, given a representation ρ : g → V ect(M) of a Lie algebra g in the
space of vector fields on a manifold or algebraic variety M , then the bracket

{f, g}R = µ < ρ⊗2(R), df ⊗ dg >, f, g ∈ Fun(M)

is Poisson. Hereafter µ denotes the product in the algebra under question and < , >

denotes the pairing between the vector fields and the differential forms extended on
their tensor powers. Quantizing this Poisson bracket, we get an algebra belonging to
a twisted, i.e., equipped with a Yang-Baxter twist S, tensor symmetric category
(“symmetric” means that this twist is involutive). Moreover, this algebra is S-
commutative, i.e., the product µ in it satisfies the relation µ = µS.
Thus, by deforming the commutative algebra Fun(M) “in the direction” of the

above P.b. we get a S-commutative algebra. It is more interesting to deform in
a similar way the non-commutative algebras, for example, those arising from a
quantization of the Kirillov-Kostant-Souriau (KKS) bracket on a given coadjoint
orbit in g∗.
Let us assume that ρ = ad∗. Then the bracket { , }R is well defined on g∗ as

well as on any orbit in g∗. It is not difficult to see that the KKS bracket and this
“R-matrix bracket” { , }R are compatible and this problem can be thought of as
one of simultaneous quantization of the whole of the Poisson pencil (P.p.) generated
by these two brackets.

In this connection the following question arises: what is a quantization of the
KKS bracket? There exist (at least) two ways to represent the quantum objects.
On the one hand it is possible to think of these objects as the quotient algebras of
the enveloping algebras U(g)h (h means here that this parameter is introduced as a
factor in the Lie bracket in the definition of the enveloping algebra).
On the other hand the quantum object can be represented into End(V ) where V

is a suitable Hilbert space. Such a representation can be constructed by means of a
geometric quantization method or by means of an orbit method, but in numerous
cases both approaches provide similar results.
We treat the algebra structure arising from the quantization of the KKS bracket

in one or in other way, and we are interested in a further deformation of this algebra.
In what follows the latter procedure will be called “twisting” to distinguish the two
types of quantization. Roughly speaking, a twisting is a passage to a twisted category
instead of the “classical” one. When a twisting arises from the above mentioned
solutions of the CYBE, it can be performed by means of an operator F = Fν

(represented as a series in a parameter ν) such that S = F−1σF where σ denotes
the flip. Existence of such a series F has been established by V.Drinfeld in [D].
As a result, the principal objects and operators of the ordinary quantum

mechanics can be twisted by means of Fν . In particular, a usual trace becomes
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S-commutative, i.e., such that tr(A ◦ B) = tr ◦ S(A ⊗ B) where ◦ denotes the
operator product. A Lie bracket turns into an S-Lie bracket in the sense of [G1],
[GRZ]. etc.

Our principal aim is to generalize this approach to the case when R is a solution
of the modified CYBE. This means that the above element [[R,R]] is g-invariant.
In this case the R-matrix bracket is Poisson only on certain orbits in g∗ which are
called, according to the terminology of [GP], the orbits of R-matrix type. However,
if g = sl(2), all orbits in g∗ are of the R-matrix type.

The result of the quantization of the above P.p. on a given orbit in g∗ can be
represented as a three parameter algebra Ach,q where h is a parameter of quantization
of the KKS bracket, q a parameter of twisting and c labels the orbits. c = 0

corresponds to the cone.

The algebras of such type have been considered in plenty of papers. We refer
the reader to [P] where these algebras (equipped with a traditional involution) have
appeared under the name of “quantum spheres” (see the discussion of involutions
in Section 5).

It was shown in [DG1] that these algebras represent flat deformations of their
classical counterparts. In this paper we realize the second step of the quantization
procedure and develop a representation theory for the algebras Ach,q in terms of
braided modules.

Roughly speaking, a braided module is a Uq(g)-module equipped with a
representation ρ : Ach,q → End(V ) in such a way that the map ρ is a Uq(g)-
morphism.

In this sense we treat the triple (Ach,q, V, ρ) as an object of twisted quantum
mechanics (more precisely, of the particular case, connected to the quantum group
Uq(g)). In the present paper we consider the simplest example of such twisted
quantum mechanics, namely, the one connected to the quantum hyperboloid and
its modules.

Although an axiomatic approach to such a version of quantum mechanics has not
yet been adequately developed, it is clear that the traditional involution approach
is not reasonable for such a type of objects, since the maps of these algebras into
End(Uk), where Uk are the braided modules mentioned above, do not respect such an
involution. In the present paper we suggest another way to coordinate the involution
with a braided structure.

The paper is organized as follows. In the next section we recall the constructions
of [DG1]. In Section 3 we develop a representation theory for this algebra in terms
of braided modules. In Section 4 we consider the so-called braided Casimir, i.e.,
an invariant (with respect to the action of the quantum group) element and assign
to it operators acting in braided modules. We prove that the latter operators are
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scalar, and we compute the eigenvalues of the braided Casimir. The last section is
devoted to a discussion of the braided (twisted) traces and involutions as ingredients
of twisted quantum mechanics.

Throughout the paper Uq(g)-Mod will denote the category of Uq(g)-modules.
We include in it, besides the finite-dimensional modules, their inductive limits. The
parameter q is assumed to be generic, and the basic field k is C or R (in the latter
case we consider the normal form of the Lie algebra g).
The authors want to thank B. Enriquez for helpful discussions and Y. Kosmann-

Schwarzbach for valuable remarks.

V.R. greatly aknowledges the hospitality of Centre de Mathématiques de l’Ecole
Polytechnique and of the Institute of Theoretical Physics of Uppsala University. His
work was partially supported by CNRS and by RFFR-MF-95-O1-01101.

2 Quantum hyperboloid: basic notions

To construct a quantum hyperboloid it is sufficient to fix a representation of the
quantum group Uq(sl(2)) into a three dimensional space V , decompose the space
V ⊗2 into a direct sum of irreducible Uq(sl(2))-modules and impose a few natural
equations on elements of V ⊗2 ⊕ V ⊕ k which are compatible with the action of the
quantum group Uq(sl(2)) and are similar to their classical counterparts.

Thus, let us consider the algebra Uq(sl(2)) generated by the elements H, X, Y

satisfying the well-known relations

[H,X ] = 2X, [H,Y ] = −2Y, [X,Y ] =
qH − q−H

q − q−1
.

Let us equip this algebra with a coproduct defined on the basic elements in the
following way

∆(X) = X ⊗ 1 + q−H ⊗X, ∆(Y ) = 1⊗ Y + Y ⊗ qH , ∆(H) = H ⊗ 1 + 1⊗H.

It is well-known that this algebra has a Hopf structure, being equipped with the
antipode γ defined by

γ(X) = −qHX, γ(H) = −H, γ(Y ) = −Y q−H .

Let us consider a linear space V with the base {u, v, w}, and turn V into a
Uq(sl(2))-module by setting

Hu = 2u, Hv = 0, Hw = −2w, Xu = 0, Xv = −(q + q−1)u, Xw = v,

Y u = −v, Y v = (q + q−1)w, Y w = 0.
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It is easy to show that the above relations for H, X, Y are satisfied.
We want to stress that throughout this paper we deal with a coordinate

representation of module elements. We consider the endomorphisms as matrices
and their action as left-multiplication by these matrices.
Using the coproduct we can equip V ⊗2 with a Uq(sl(2))-module structure as

well. This module is reducible and can be decomposed into a direct sum of three
irreducible Uq(sl(2))-modules

V0 = span((q
3 + q)uw + v2 + (q + q−1)wu),

V1 = span(q
2uv − vu, (q3 + q)(uw − wu) + (1− q2)v2, −q2vw + wv),

V2 = span(uu, uv + q2vu, uw − qvv + q4wu, vw + q2wv, ww)

of spins 0, 1 and 2 (hereafter the sign ⊗ is omitted).

Then only the following relations imposed on the elements of the space V ⊗2⊕V ⊕k
are compatible with the Uq(sl(2))-action:

Cq = (q
3 + q)uw + vv + (q + q−1)wu = c, q2uv − vu = −2hu,

(q3 + q)(uw − wu) + (1− q2)v2 = 2hv, −q2vw + wv = 2hw

with arbitrary h and c. The element Cq will be called a braided Casimir.
Therefore it is natural to introduce a quantum hyperboloid as the quotient algebra

of the free tensor algebra T (V ) over the ideal generated by elements

(q3 + q)uw + v2 + (q + q−1)wu − c, q2uv − vu+ 2hu,

(q3 + q)(uw − wu) + (1− q2)v2 − 2hv, −q2vw + wv − 2hw.

This quotient algebra will be denoted by Ach,q.
The quotient algebra of T (V ) over the ideal generated by the latter three elements

will be denoted byAh,q. This algebra is another (compared with the quantum algebra
Uq(sl(2))) q-analogue of the enveloping algebra U(sl(2)).

In [DG2] it has been shown that both algebras Ach,q and Ah,q represent the flat
deformations of their classical counterparts. Let us make some comments on the
proof.
Concerning the algebra Ach,q, the proof of flatness is based on the two following

statements:

1. The algebra A00,q is Koszul (see [BG] for definition). This fact was proved in
[DG1] “by hands”. Now there exists (for the case q = 1 and hence for a generic q

since the deformation A00,1 → A00,q is flat) a more conceptual proof valid for any
simple Lie algebra (see [Be], [Bo]).
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