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Abstract
Invariant theory has been a major subject of research in the 19th century.

One of the highlights was Gordan’s famous theorem from 1868 showing that
the invariants and covariants of binary forms have a finite basis. His method
was constructive and led to explicit degree bounds for a system of generators
(Jordan 1876/79).
In 1890, Hilbert presented a very general finiteness result using completely

different methods such as his famous “Basissatz.” He was heavily attacked be-
cause his proof didn’t give any tools to construct a system of generators. In his
second paper from 1893 he again introduced new techniques in order to make
his approach more constructive. This paper contains the “Nullstellensatz,”
“Noether’s Normalization Lemma,” and the “Hilbert-Mumford Criterion!”
We shortly overview this development, discuss in detail the degree bounds

given by Popov, Wehlau and Hiss and describe some exciting new development
relating these bounds with the (geometric) degree of projective varieties and
with the Eisenbud-Goto conjecture. The challenge is still the fact that the
degree bounds for binary forms given by Jordan are much better than those
obtained from the work of Popov and Hiss.

Résumé
La théorie des invariants a été un sujet de recherche majeur au 19ème siècle.

Un des résultats marquants a été le fameux théorème de Gordan en 1868 qui
établissait que les invariants et les covariants des formes binaires ont une base
finie ; sa méthode était constructive et a conduit à des bornes explicites des
degrés d’un système de générateurs (Jordan 1876/79).
En 1890, Hilbert a présenté un résultat de finitude très général utilisant

des méthodes complètement différentes comme le fameux “Basissatz.” Il a
été vivement attaqué parce que sa preuve ne construisait pas un système de
générateurs explicite. Dans son deuxième papier datant de 1893, il a introduit
de nouvelles techniques pour rendre son approche plus constructive. Ce dernier
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papier contient le “Nullstellensatz,” le «Lemme de Normalization de Noether »
et le « Critère de Hilbert-Mumford »!
Nous présentons brièvement ces développements, discutons en détail les

bornes pour les degrés donnés par Popov, Wehlau et Hiss et décrivons
certains nouveaux résultats reliant ces bornes avec le degré (géométrique) de
certaines variétés projectives et avec la conjecture de Eisenbud-Goto. Encore
maintenant, le défi est que les bornes des degrés données par Jordan pour les
formes binaires sont meilleures que celles obtenues dans le travail de Popov et
Hiss.

1 Introduction

Let ρ : G→ GL(V ) be a representation of a groupG on a vector space V of dimension
n < ∞. For simplicity, we assume that the base field k is algebraically closed
and of characteristic zero. As usual, the group G acts linearly on the k-algebra
�(V ) of polynomial functions on V , the coordinate ring of V . Of special interest
is the subalgebra of invariant functions, the invariant ring, which will be denoted
by �(V )G. It carries a lot of information about the representation itself, its orbit
structure and its geometry, cf. [MFK94], [Kra85].

The ring of invariants was a major object of research in the last century. We
refer to the encyclopedia article [Mey99] of Meyer from 1899 for a survey (see also
[Kra85]). There are a number of natural questions in this context:

– Is the invariant ring �(V )G finitely generated as a k-algebra?

– If so, can one determine an explicit upper bound for the degrees of a system
of generators of �(V )G?

– Are there algorithms to calculate a system of generators and what is their
complexity?

The first question is essentially Hilbert’s 14th problem, although his formulation
was more general (see [Hil01]). The answer is positive for reductive groups by results
of Hilbert, Weyl, Mumford, Nagata and others (see [MFK94]), but negative in
general due to the famous counterexample of Nagata [Nag59]. We will not discuss
this here. For a nice summary of Hilbert’s 14th problem we refer to [New78, pp.
90–92].

Our main concern is the second question. For this purpose let us introduce the
number β(V ) associated to a given representation V of G:

β(V ) := min{d | �(V )G is generated by invariants of degree ≤ d}.

In the following we discuss upper bounds for β(V ). We start with a historical sketch
followed by a survey of classical and recent results. In the last paragraph we add a
few remarks about algorithms.
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2 Gordan’s work on binary forms

The first general finiteness result was obtained by Paul Gordan in 1868 ([Gor68]).
This was clearly one of the highlights of classical invariant theory of the 19th century
which has seen a lot of interesting work in this area by famous mathematicians,
like Boole, Sylvester, Cayley, Aronhold, Hermite, Eisenstein, Clebsch, Gordan, Lie,
Klein, Cappelli and others.

Theorem 2.1 — For every finite dimensional SL2-module V the ring of invariants
�(V )SL2 is finitely generated as a k-algebra.

Beside invariants Gordan also studies covariants and shows that they form a
finitely generated k-algebra. (This is in fact contained in the theorem above as we
will see below.) We shortly recall the definition.

Let Vd denote the binary forms of degree d, i.e., the vector space of homogeneous
polynomials in x, y of degree d. The group SL2 acts on this (d + 1)-dimensional
vector space by substitution:(

a b

c d

)
· p(x, y) := p(ax+ cy, bx+ dy) for p(x, y) ∈ Vd.

It is well-known that the modules Vd (d = 0, 1, . . . ) form a complete set of
representatives of the simple SL2-modules.

Definition 2.2 — Let W be an SL2-module. A covariant of degree m and order d of
W is an equivariant homogeneous polynomial map ϕ : W → Vd of degree m, i.e., we
have ϕ(g · w) = g · ϕ(w) for g ∈ SL2 and ϕ(tw) = tmϕ(w) for t ∈ k.

A covariant can be multiplied by an invariant function. Thus the covariants
�d(W ) of a fixed order d form a module over the ring of invariants. In fact, one easily
sees that �d(W ) = (�(W )⊗Vd)SL2 in a canonical way. More generally, multiplication
of binary forms defines a bilinear map Vd × Ve → Vd+e. With this multiplication
the vector space �(W ) :=

⊕
d �d(W ) of covariants becomes a graded k-algebra, the

ring of covariants, which contains the ring of invariants as its component of degree
0. In fact, �(W ) is itself a ring of invariants:

�(W ) =
⊕
d

(�(W )⊗ Vd)
SL2 = (�(W )⊗ �(V1))

SL2 = �(W ⊕ V1)
SL2 .

This algebra has an important additional structure given by transvection (in
German: “Überschiebung”). It is based on the Clebsch-Gordan formula which tells
us that there is a canonical decomposition

Vd ⊗ Ve � Vd+e ⊕ Vd+e−2 ⊕ · · · ⊕ Vd−e
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as an SL2-module where we assume that d ≥ e. Then the ith transvection of two
covariants ϕ, ψ of order d, e, respectively, is defined by

(ϕ, ψ)i := pri ◦(ϕ⊗ ψ)

where pri is the linear projection of Vd⊗Ve onto Vd+e−2i. This is clearly a covariant
of order d+ e− 2i and degree degϕ+ degψ.

By representing a binary form as a product of linear forms, i.e., by considering the
equivariant surjective morphism V d1 → Vd given by multiplication, one can produce
a natural system of generators for the vector space of covariants whose elements
are represented by so-called symbolic expressions. This is based on the fact that the
invariants and covariants of an arbitrary direct sum of linear forms W = V N1 are
well-known and easy to describe. Represent an element of � = (�1, �2, . . . , �N ) ∈ V N1
as a 2×N -matrix

(
a1 a2 a3 · · · aN

b1 b2 b3 · · · bN

)
where �i = aix+ biy.

Then the invariants are generated by the 2 × 2-minors [i, j] := det

(
ai aj

b1 bj

)
and

the covariants of order d by the maps � �→ �i1�i2 · · · �id . This approach is classically
called symbolic method (cf. [GrY03], [Schu68]).

By rather technical manipulations of these symbolic expressions Gordan was
able to prove that the ring of covariants is finitely generated. He starts with a
finite number of very simple covariants and shows that one only needs finitely
many (multiple) transvections in order to obtain a complete system of generators.
Gordan’s method is constructive and he easily produces a system of generators for
the invariants and covariants of Vd for d ≤ 5.

Using the same method of symbolic expressions Camille Jordan is able to give
the following explicit bounds for the degrees of the generators ([Jor76, Jor79]).

Theorem 2.3 — The ring of covariants of W =
⊕
Vdi where di ≤ d for all i is

generated by the covariants of order ≤ 2d2 and degree ≤ d6, for d ≥ 2.

In particular, we obtain in our previous notation β(Vd) ≤ d6. This is really a
big achievement. Today, a similar polynomial bound is not known for any other
semi-simple group! We refer to the work of Jerzy Weyman [Wey93] for a modern
interpretation of Gordan’s method.
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3 Hilbert’s general finiteness results

In 1890 David Hilbert proved a very general finiteness result using completely new
methods ([Hil90]). He formulated it only for the groups SLn and GLn, but he was
fully aware that his results generalize to other groups provided that there exists an
analogue to the Ω-process (see [Hil90, pp. 532–534]).

Finiteness Theorem —Let V be a G-module and assume that the linear representa-
tion of G on �(V ) is completely reducible. Then the invariant ring �(V )G is finitely
generated as a k-algebra.

This result applies to linearly reductive groups, i.e., algebraic groups whose
rational representations are completely reducible. Finite groups, tori and the
classical groups are examples of such groups.

The proof of Hilbert uses the following two main facts:

1. Every ideal in the polynomial ring �(V ) = k[x1, x2, . . . , xn] is finitely
generated.
(This is the famous “Basissatz;” it is theorem 1 of Hilbert’s paper.)

2. There exits a linear projection R : �(V ) → �(V )G which is a �(V )G-module
homomorphism and satisfies R(g · f) = R(f) for all g ∈ G.
(R is called Reynolds operator.)

In Hilbert’s situation (i.e. G = SLn or GLn) this operator R corresponds to Cayley’s
Ω-process (cf. [Hil90], [We46, VIII.7] or [Spr89, II.2.3]). For finite groups it is given
by

R : f �→
1

|G|

∑
g∈G

g · f

Using these two facts Hilbert’s proof of the Finiteness Theorem is not difficult:

Proof. Let I be the ideal of �(V ) generated by all G-invariant homogeneous
polynomials of positive degree. By (1) we can find finitely many homogeneous G-
invariant generators f1, f2, . . . , fr of I. We claim that �(V )G = k[f1, f2, . . . , fr]. In
fact, we show by induction on d that every homogeneous invariant polynomial f of
degree d lies in k[f1, f2, . . . , fr].

The case d = 0 is trivial. Suppose d > 0. Then f ∈ I and we can write it in the
form

f = a1f1 + a2f2 + · · ·+ arfr where a1, a2, . . . , ar ∈ �(V ).

Applying R from (2) yields

f = b1f1 + b2f2 + · · ·+ brfr where bi = R(ai) ∈ �(V )G for all i.
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