Dense Orbits in Orbital Varieties in \mathfrak{Sl}_n

Anna MELNIKOV*

Weizmann Institute

Abstract

Let \mathcal{O} be a nilpotent orbit in the Lie algebra $\mathfrak{sl}_n(\mathbb{C})$ and let \mathcal{V} be an orbital variety contained in \mathcal{O} . Let \mathbf{P} be the largest parabolic subgroup of $\mathrm{SL}(n,\mathbb{C})$ stabilizing \mathcal{V} . We describe nilpotent orbits such that all the orbital varieties in them have a dense \mathbf{P} orbit and show that for n big enough the majority of nilpotent orbits do not fulfill this.

Résumé

Soit \mathcal{O} une orbite nilpotente dans l'algèbre de Lie $\mathfrak{sl}_n(\mathbb{C})$ et soit \mathcal{V} une variété orbitale contenue dans \mathcal{O} . Soit \mathbf{P} le plus grand sous-groupe parabolique de $\mathrm{SL}(n,\mathbb{C})$ stabilisant \mathcal{V} . Nous décrivons les orbites nilpotentes dont toutes les variétés orbitales contiennent une \mathbf{P} -orbite dense et montrons que pour n assez grand la majorité des orbites nilpotentes n'ont pas cette propriété.

1 Introduction

1.1 Let **G** be a connected semisimple finite dimensional complex algebraic group. Let \mathfrak{g} be its Lie algebra and $U(\mathfrak{g})$ be the enveloping algebra of \mathfrak{g} . Consider the adjoint action of **G** on \mathfrak{g} . A **G** orbit \mathbb{O} in \mathfrak{g} is called nilpotent if it consists of nilpotent elements.

Fix some triangular decomposition $\mathfrak{g} = \mathfrak{n} \bigoplus \mathfrak{h} \bigoplus \mathfrak{n}^-$. An irreducible component of $\mathfrak{O} \cap \mathfrak{n}$ is called an orbital variety contained in \mathfrak{O} . Orbital varieties play a key role in Springer's Weyl group representations and in the primitive ideal theory of $U(\mathfrak{g})$.

The last can be detailed as follows. Since \mathfrak{g} is semisimple we can identify \mathfrak{g} with \mathfrak{g}^* through the Killing form. This identification gives an adjoint orbit a symplectic structure. Let \mathscr{V} be an orbital variety contained in \mathbb{O} . After N. Spaltenstein [Sp] and

Société Mathématique de France

AMS 1980 Mathematics Subject Classification (1985 Revision): 17B20, 17B35, 14M99

^{*}I am very grateful to A. Joseph for arousing my interest in the Smith conjecture, and many fruitful discussions. The techniques I used were inspired by Joseph's application of the Vogan analysis to orbital varieties. I would also like to thank V. Hinich for geometrical discussions, and S. Yakovenko for explanations on package "Mathematica".

R. Steinberg [St] one has

(*)
$$\dim \mathcal{V} = \frac{1}{2} \dim \mathbb{O}$$

Moreover it was pointed out by A. Joseph [J] that this implies that an orbital variety is a Lagrangian subvariety of its nilpotent orbit. According to the orbit method philosophy one would like to attach an irreducible representation of $U(\mathfrak{g})$ to \mathscr{V} . This can be naturally implemented in the case of $\mathfrak{g} = \mathfrak{sl}_n$ where there exists a one to one correspondence between the set of primitive ideals of $U(\mathfrak{g})$ containing the augmentation ideal of its centre and the set of orbital varieties in \mathfrak{g} . Moreover as it is shown in [M2] in this case $\widetilde{\mathscr{V}}$ is the associated variety of the corresponding simple highest weight module so that orbital varieties give a natural geometric understanding of the classification of primitive ideals. Hence the study of orbital varieties in \mathfrak{sl}_n is especially interesting.

1.2 Orbital varieties remain rather mysterious objects. The only general description was given by R. Steinberg [St] and is as follows. Let $R \subset \mathfrak{h}^*$ be the set of roots, R^+ be the choice of positive roots defining \mathfrak{n} and $\Pi \subset R^+$ be the corresponding set of simple roots. Let W be the Weyl group of $(\mathfrak{g}, \mathfrak{h})$ acting on R. Let \mathbf{B} be the Borel subgroup of \mathbf{G} corresponding to the Borel subalgebra $\mathfrak{b} = \mathfrak{h} \bigoplus \mathfrak{n}$. Recall that $\mathfrak{n} = \bigoplus_{\alpha \in R^+} X_{\alpha}$ (resp. $\mathfrak{n}^- = \bigoplus_{\alpha \in -R^+} X_{\alpha}$) where X_{α} is the root subspace corresponding to α . For $w \in W$ set $\mathfrak{n} \cap^w \mathfrak{n} := \bigoplus_{\alpha \in R^+ \cap w(R^+)} X_{\alpha}$. For each subgroup \mathbf{H} of \mathbf{G} let $\mathbf{H}(\mathfrak{n} \cap^w \mathfrak{n})$ be the set of \mathbf{H} conjugates of $\mathfrak{n} \cap^w \mathfrak{n} = \overline{\mathbb{O}}$. Then $\mathcal{V}_w = \overline{\mathbf{B}(\mathfrak{n} \cap^w \mathfrak{n})} \cap \mathbb{O}$ is an orbital variety and the map $\phi : w \mapsto \mathcal{V}_w$ is a surjection of W onto the set of orbital varieties.

This description is not very satisfactory from the geometric point of view since a \mathbf{B} invariant subvariety generated by a linear space is a very complex object. One of the attempts to give a reasonable description of an orbital variety is the following conjecture proposed by S. P. Smith.

Given an orbital variety \mathcal{V} let $\mathbf{P}_{\mathcal{V}}$ be its stabilizer. This is a standard parabolic subgroup of **G**. We say that an orbital variety \mathcal{V} is of S type if there exists a dense $\mathbf{P}_{\mathcal{V}}$ orbit in it. We say that a nilpotent orbit \mathbb{O} is of S type if all its orbital varieties are of S type.

Conjecture 1.1 (S. P. Smith) — In \mathfrak{Sl}_n all orbital varieties are of S type.

The truth of this conjecture would give a more elegant and simple description of orbital varieties. For a given orbital variety closure it would provide a way to construct a resolution of its singularities and be the first step towards a description of its ideal of definition. It could also provide a natural way to define orbital varieties in the case of quantum groups. These implications made the conjecture (suggested by S.P. Smith some ten years ago) quite attractive.

Séminaires et Congrès 2

1.3 The conjecture is true for \mathfrak{Sl}_n when $n \leq 8$ as shown by E. Benlolo in [B]. Yet here we show that the conjecture is false in general.

In 2.5 we give the first counter-example to the Smith conjecture which appears in \mathfrak{sl}_9 and is the only counter-example for $n \leq 9$. We give some other counter-examples which we use in what follows.

Further we investigate the situation for $n \gg 0$. In § 3 we give sufficient conditions for an orbit to be not of S type. This can be explained as follows.

Take $\mathfrak{g} = \mathfrak{sl}_n$. Consider \mathfrak{sl}_i for i < n as a Levi subalgebra $\mathfrak{l}_{1,i}$ of \mathfrak{g} (cf. 3.2). Set $\mathfrak{n}_{1,i} = \mathfrak{n} \cap \mathfrak{l}_{1,i}$ and define the projection $\pi_{1,i} : \mathfrak{n} \to \mathfrak{n}_{1,i}$. A result of [M1] is that $\pi_{1,i}$ takes an orbital variety closure in \mathfrak{sl}_n to an orbital variety closure in \mathfrak{sl}_i .

Given an orbital variety \mathcal{V} let $\tau(\mathcal{V})$ be its τ -invariant (cf. 2.4). As we explain in 3.2 if \mathcal{V} is of S type and $\alpha_i \notin \tau(\mathcal{V})$ then $\pi_{1,i}(\mathcal{V})$ must be of S type. From this given an orbital variety not of S type in \mathfrak{sl}_i we show how to construct orbital varieties not of S type in \mathfrak{sl}_n for n > i.

1.4 In § 4 we give sufficient conditions for an orbit to be of S type. This can be explained as follows.

Orbital varieties are irreducible components of $\mathbb{O}\cap \mathfrak{n}$. Yet they are as far as possible of being disjoint. Indeed after N. Spaltenstein [Sp] for any two orbital varieties $\mathcal{V}, \mathcal{V}' \subset \mathbb{O}$ there exist a chain of orbital varieties $\mathcal{V} = \mathcal{V}_1, \cdots, \mathcal{V}_k = \mathcal{V}' \subset \mathbb{O}$ with $\operatorname{codim}(\mathcal{V}_i \cap \mathcal{V}_{i+1}) = 1$ for all $i \in \{1, 2, \cdots, k-1\}$.

In \mathfrak{Sl}_n if a nilpotent orbit is neither regular nor minimal it contains more than one orbital variety. Following A. Joseph we apply Vogan's analysis [V] to orbital varieties. For a given orbital variety \mathcal{V} this defines the orbital variety $\mathcal{T}_{\alpha\beta}(\mathcal{V})$ (cf. 4.2). One has $\operatorname{codim}(\mathcal{T}_{\alpha\beta}(\mathcal{V}) \cap \mathcal{V}) = 1$ and for any given pair of orbital varieties $\mathcal{V}, \mathcal{V}' \subset \mathbb{O}$ one may pass from \mathcal{V} to \mathcal{V}' by a sequence of $\mathcal{T}_{\alpha\beta}$ operations. This refines Spaltenstein's result.

In each nilpotent orbit there exists a Bala-Carter component (cf. 4.3). As shown by R. Carter in [C] a Bala-Carter component contains a dense **B** orbit. One can use such orbital varieties and Vogan's analysis to construct other orbital varieties of Stype; but this does not lead to all orbital varieties of S type. The problem is that the dimension of $\mathbf{P}_{\mathcal{T}_{\alpha\beta}(\mathcal{V})}$ can differ by more than one from the dimension of $\mathbf{P}_{\mathcal{V}}$ and then we cannot conclude that \mathcal{V} of S type implies $\mathcal{T}_{\alpha\beta}(\mathcal{V})$ of S type. Generally speaking this is the reason that the orbital varieties not of S type appear. However the algorithm we obtain is not decisive; but it helps to construct orbital varieties of S type and to give counter-examples to conjecture 1.1.

To show that a specific nilpotent orbit is of S type we find in it enough orbital varieties with a dense **B** orbit so that applying Vogan's analysis we get all the orbital varieties in the given orbit. These computations compose the main part of § 4 and are technically the most difficult part of the work. A few orbits described at the end

Société Mathématique de France

of \S 4 stay unclassified. These cases apparently require more subtle computations.

2 Counter-examples

Lemma 2.1 — Fix $w \in W$. If the orbital variety \mathcal{V}_w has a dense $\mathbf{P}_{\mathcal{V}_w}$ orbit \mathfrak{P} then

$$\mathcal{P} \cap (\mathfrak{n} \cap^w \mathfrak{n}) \neq \emptyset.$$

It is convenient to replace \mathfrak{sl}_n by $\mathfrak{g} = \mathfrak{gl}_n$. This obviously makes no difference. Note that the adjoint action of $\mathbf{G} = GL_n$ on \mathfrak{g} is just a conjugation.

Let \mathfrak{n} be the subalgebra of strictly upper-triangular matrices in \mathfrak{g} and \mathbf{B} be the (Borel) subgroup of upper-triangular matrices in \mathbf{G} . All parabolic subgroups we consider further are standard, that is contain \mathbf{B} .

Let e_{ij} be the matrix having 1 in the ij entry and 0 elsewhere. Set $\Pi := \{\alpha_i\}_{i=1}^{n-1}$. Take $i \leq j$. Then for $\alpha = \sum_{k=i}^{j} \alpha_k$, the root space $X_{\alpha} = \mathbb{C}e_{i,j+1}$ and the root space $X_{-\alpha} = \mathbb{C}e_{j+1,i}$.

We identify W with the permutation subgroup \mathbf{S}_n of GL_n . For $\alpha \in \Pi$ let s_α be the corresponding fundamental reflection and set $s_i = s_{\alpha_i}$.

Let [,] denote the Lie product on \mathfrak{g} given here by commutation in End V. For a standard parabolic subgroup \mathbf{P} of \mathbf{G} we set $\mathfrak{p} := \text{Lie } \mathbf{P}$ which is a standard parabolic subalgebra of \mathfrak{g} , that is contains \mathfrak{b} .

Lemma 2.2 — Take $M \in \mathfrak{g}$ and a parabolic subgroup **P** of **G**. One has

$$\dim \mathbf{P}M = \dim[\mathfrak{p}, M].$$

Combining these two lemmas we obtain

Corollary 2.3 — Fix $w \in W$. The orbital variety \mathcal{V}_w is of S type if and only if for some $M \in \mathfrak{n} \cap^w \mathfrak{n}$ one has

$$\dim[\mathfrak{p}, M] = \dim \mathscr{V}_w.$$

2.2 Nilpotent orbits in \mathfrak{Sl}_n are parameterized by Young diagrams. Orbital varieties are parameterized by standard Young tableaux. Let us explain these parameterizations.

In \mathfrak{Sl}_n or \mathfrak{gl}_n each nilpotent orbit \mathbb{O} is described by its Jordan form. A Jordan form in turn is parameterized by a partition $\lambda = (\lambda_1 \ge \lambda_2 \cdots \lambda_k > 0)$ of *n* giving the length of Jordan blocks. We denote by \mathbb{O}_{λ} the nilpotent orbit determined by λ .

It is convenient to represent a partition $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0)$ of n as a Young diagram D_{λ} , that is an array of k rows of boxes starting on the left with the *i*-th row containing λ_i boxes. The dual partition $\hat{\lambda} = (\hat{\lambda}_1, \hat{\lambda}_2 \cdots)$ is defined

Séminaires et Congrès 2

by setting $\hat{\lambda}_i$ equal to the length of the *i*-th column of the diagram D_{λ} that is $\hat{\lambda}_i = \sharp\{j : \lambda_j \ge i\}.$

One has (cf. [H] \S 3.8)

(**)
$$\dim \mathbb{O}_{\lambda} = n^2 - \sum_{i=1}^k \hat{\lambda}_i^2.$$

Define a partial order on partitions as follows. Given two partitions $\lambda = (\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_k)$ and $\mu = (\mu_1 \ge \mu_2 \ge \cdots \ge \mu_j)$ of n we set $\lambda \ge \mu$ if

$$\sum_{l=1}^{i} \lambda_{\ell} \ge \sum_{\ell=1}^{i} \mu_{\ell}, \text{ for all } i = 1, 2, \cdots, k.$$

The following result of M. Gerstenhaber (cf. [H] § 3.10) shows that this order corresponds to inclusion of nilpotent orbit closures:

Theorem 2.4 — Given two partitions λ and μ of n one has $\lambda \geq \mu$ if and only if $\overline{\mathbb{O}}_{\lambda} \supset \overline{\mathbb{O}}_{\mu}$.

2.3 Given a partition λ of n fill the boxes of D_{λ} with n distinct positive integers. If the entries increases in rows from left to right and in columns from top to bottom we call such an array a Young tableau. If the numbers in Young tableau form a set of integers from 1 to n we call it standard. Let \mathbf{T}_n be the set of standard Young tableaux of size n.

The shape of a Young tableau T is defined to be a Young diagram from which T was built. It defines a partition of n which we denote sh T.

The Robinson - Schensted correspondence $w \mapsto (Q(w), R(w))$ gives a bijection (see, for example [Kn]) from the symmetric group \mathbf{S}_n onto the pairs of standard Young tableaux of the same shape. By R. Steinberg [St1] for all $w, y \in \mathbf{S}_n$ one has $\mathcal{V}_w = \mathcal{V}_y$ iff Q(w) = Q(y). This parameterizes the set of orbital varieties by \mathbf{T}_n . Moreover sh $Q(w) = \lambda$ if and only if \mathcal{V}_w is contained in \mathbb{O}_{λ} .

We set $\mathcal{V}_T := \mathcal{V}_w$ if Q(w) = T, $\mathbf{P}_T := \mathbf{P}_{\mathcal{V}_T}$ and $\mathfrak{p}_T := \mathfrak{p}_{\mathcal{V}_T}$.

Let T be some Young tableaux with sh $T = \lambda = (\lambda_1, \cdots)$. Denote by T_j^i its *ij*-th entry. If k is the entry T_j^i of T, set $r_T(k) = i$ and $c_T(k) = j$.

For $i: 1 \leq i \leq \hat{\lambda}_1$ set $T^i := (T_1^i, \cdots, T_{\lambda_i}^i)$. This is the ordered set of entries of the *i*-th row. For each $T \in \mathbf{T}_n$ we define $w_r(T) \in \mathbf{S}_n$ through

$$w_r(T) := \begin{pmatrix} 1 \cdots & \cdots & n \\ T^{\hat{\lambda}_1} & \cdots & T^1 \end{pmatrix}.$$

By [M3], § 3.2.2 $Q(w_r(T)) = T$.

Société Mathématique de France