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Abstract
Let O be a nilpotent orbit in the Lie algebra ��n(�) and let V be an orbital

variety contained in O. Let P be the largest parabolic subgroup of SL(n,�)
stabilizing V. We describe nilpotent orbits such that all the orbital varieties
in them have a dense P orbit and show that for n big enough the majority of
nilpotent orbits do not fulfill this.

Résumé
Soit O une orbite nilpotente dans l’algèbre de Lie ��n(�) et soit V une

variété orbitale contenue dans O. Soit P le plus grand sous-groupe parabolique
de SL(n,�) stabilisant V. Nous décrivons les orbites nilpotentes dont toutes
les variétés orbitales contiennent une P-orbite dense et montrons que pour n
assez grand la majorité des orbites nilpotentes n’ont pas cette propriété.

1 Introduction

1.1 Let G be a connected semisimple finite dimensional complex algebraic group.
Let � be its Lie algebra and U(�) be the enveloping algebra of �. Consider the
adjoint action of G on �. A G orbit � in � is called nilpotent if it consists of
nilpotent elements.

Fix some triangular decomposition � = �
⊕

�
⊕

�−. An irreducible component
of � ∩ � is called an orbital variety contained in �. Orbital varieties play a key role
in Springer’s Weyl group representations and in the primitive ideal theory of U(�).

The last can be detailed as follows. Since � is semisimple we can identify � with
�∗ through the Killing form. This identification gives an adjoint orbit a symplectic
structure. Let � be an orbital variety contained in �. After N. Spaltenstein [Sp] and
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R. Steinberg [St] one has

dim� = 1/2 dim�.(∗)

Moreover it was pointed out by A. Joseph [J] that this implies that an orbital
variety is a Lagrangian subvariety of its nilpotent orbit. According to the orbit
method philosophy one would like to attach an irreducible representation of U(�)

to �. This can be naturally implemented in the case of � = ��n where there exists
a one to one correspondence between the set of primitive ideals of U(�) containing
the augmentation ideal of its centre and the set of orbital varieties in �. Moreover as
it is shown in [M2] in this case � is the associated variety of the corresponding
simple highest weight module so that orbital varieties give a natural geometric
understanding of the classification of primitive ideals. Hence the study of orbital
varieties in ��n is especially interesting.

1.2 Orbital varieties remain rather mysterious objects. The only general description
was given by R. Steinberg [St] and is as follows. Let R ⊂ �∗ be the set of roots, R+ be
the choice of positive roots defining � and Π ⊂ R+ be the corresponding set of simple
roots. Let W be the Weyl group of (�, �) acting on R. Let B be the Borel subgroup
of G corresponding to the Borel subalgebra � = �

⊕
�. Recall that � =

⊕
α∈R+ Xα

(resp.�− =
⊕
α∈−R+ Xα) where Xα is the root subspace corresponding to α. For

w ∈W set �∩w� :=
⊕
α∈R+∩w(R+)Xα. For each subgroupH ofG let H(�∩w�) be

the set ofH conjugates of �∩w�. One easily sees that there exists a unique nilpotent
orbit � such that G(� ∩w �) = �. Then �w = B(� ∩w �) ∩ � is an orbital variety
and the map φ : w �→ �w is a surjection of W onto the set of orbital varieties.

This description is not very satisfactory from the geometric point of view since a
B invariant subvariety generated by a linear space is a very complex object. One of
the attempts to give a reasonable description of an orbital variety is the following
conjecture proposed by S. P. Smith.

Given an orbital variety � let P� be its stabilizer. This is a standard parabolic
subgroup of G. We say that an orbital variety � is of S type if there exists a dense
P� orbit in it. We say that a nilpotent orbit � is of S type if all its orbital varieties
are of S type.

Conjecture 1.1 (S. P. Smith) — In ��n all orbital varieties are of S type.

The truth of this conjecture would give a more elegant and simple description
of orbital varieties. For a given orbital variety closure it would provide a way to
construct a resolution of its singularities and be the first step towards a description
of its ideal of definition. It could also provide a natural way to define orbital varieties
in the case of quantum groups. These implications made the conjecture (suggested
by S.P. Smith some ten years ago) quite attractive.
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1.3 The conjecture is true for ��n when n ≤ 8 as shown by E. Benlolo in [B]. Yet
here we show that the conjecture is false in general.

In 2.5 we give the first counter-example to the Smith conjecture which appears in
��9 and is the only counter-example for n ≤ 9. We give some other counter-examples
which we use in what follows.

Further we investigate the situation for n� 0. In § 3 we give sufficient conditions
for an orbit to be not of S type. This can be explained as follows.

Take � = ��n. Consider ��i for i < n as a Levi subalgebra �1,i of � (cf. 3.2). Set
�1,i = � ∩ �1,i and define the projection π1,i : �→ �1,i. A result of [M1] is that π1,i
takes an orbital variety closure in ��n to an orbital variety closure in ��i.

Given an orbital variety � let τ(�) be its τ -invariant (cf. 2.4). As we explain in 3.2
if � is of S type and αi 	∈ τ(�) then π1,i(�) must be of S type. From this given an
orbital variety not of S type in ��i we show how to construct orbital varieties not
of S type in ��n for n > i.

1.4 In § 4 we give sufficient conditions for an orbit to be of S type. This can be
explained as follows.

Orbital varieties are irreducible components of �∩�. Yet they are as far as possible
of being disjoint. Indeed after N. Spaltenstein [Sp] for any two orbital varieties
�,�′ ⊂ � there exist a chain of orbital varieties � = �1, · · · ,�k = �′ ⊂ � with
codim(�i ∩�i+1) = 1 for all i ∈ {1, 2, · · · , k − 1}.

In ��n if a nilpotent orbit is neither regular nor minimal it contains more than one
orbital variety. Following A. Joseph we apply Vogan’s analysis [V] to orbital varieties.
For a given orbital variety � this defines the orbital variety 	αβ(�) (cf. 4.2). One
has codim(	αβ(�)∩�) = 1 and for any given pair of orbital varieties �,�′ ⊂ � one
may pass from � to �′ by a sequence of 	αβ operations. This refines Spaltenstein’s
result.

In each nilpotent orbit there exists a Bala-Carter component (cf. 4.3). As shown
by R. Carter in [C] a Bala-Carter component contains a dense B orbit. One can use
such orbital varieties and Vogan’s analysis to construct other orbital varieties of S
type; but this does not lead to all orbital varieties of S type. The problem is that
the dimension of P	αβ(�) can differ by more than one from the dimension of P�

and then we cannot conclude that � of S type implies 	αβ(�) of S type. Generally
speaking this is the reason that the orbital varieties not of S type appear. However
the algorithm we obtain is not decisive; but it helps to construct orbital varieties of
S type and to give counter-examples to conjecture 1.1.

To show that a specific nilpotent orbit is of S type we find in it enough orbital
varieties with a dense B orbit so that applying Vogan’s analysis we get all the orbital
varieties in the given orbit. These computations compose the main part of § 4 and
are technically the most difficult part of the work. A few orbits described at the end
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of § 4 stay unclassified. These cases apparently require more subtle computations.

2 Counter-examples

Lemma 2.1 — Fix w ∈W. If the orbital variety �w has a dense P�w orbit 
 then


 ∩ (� ∩w �) 	= ∅.

It is convenient to replace ��n by � = ��n. This obviously makes no difference.
Note that the adjoint action of G = GLn on � is just a conjugation.

Let � be the subalgebra of strictly upper-triangular matrices in � and B be the
(Borel) subgroup of upper-triangular matrices in G. All parabolic subgroups we
consider further are standard, that is contain B.

Let eij be the matrix having 1 in the ij entry and 0 elsewhere. Set Π := {αi}
n−1
i=1 .

Take i ≤ j. Then for α =
∑j
k=i αk, the root space Xα = �ei,j+1 and the root space

X−α = �ej+1,i.

We identify W with the permutation subgroup Sn of GLn. For α ∈ Π let sα be
the corresponding fundamental reflection and set si = sαi .

Let [ , ] denote the Lie product on � given here by commutation in EndV. For a
standard parabolic subgroup P ofG we set � := LieP which is a standard parabolic
subalgebra of �, that is contains �.

Lemma 2.2 — Take M ∈ � and a parabolic subgroup P of G. One has

dimPM = dim[�,M ].

Combining these two lemmas we obtain

Corollary 2.3 — Fix w ∈ W. The orbital variety �w is of S type if and only if for
some M ∈ � ∩w � one has

dim[�,M ] = dim�w.

2.2 Nilpotent orbits in ��n are parameterized by Young diagrams. Orbital
varieties are parameterized by standard Young tableaux. Let us explain these
parameterizations.

In ��n or ��n each nilpotent orbit � is described by its Jordan form. A Jordan
form in turn is parameterized by a partition λ = (λ1 ≥ λ2 · · ·λk > 0) of n giving
the length of Jordan blocks. We denote by �λ the nilpotent orbit determined by λ.

It is convenient to represent a partition λ = (λ1 ≥ λ2 ≥ · · · ≥ λk > 0) of n

as a Young diagram Dλ, that is an array of k rows of boxes starting on the left
with the i-th row containing λi boxes. The dual partition λ̂ = (λ̂1, λ̂2 · · · ) is defined
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by setting λ̂i equal to the length of the i−th column of the diagram Dλ that is
λ̂i = �{j : λj ≥ i}.

One has (cf. [H] § 3.8)

dim�λ = n2 −
k∑
i=1

λ̂2i .(∗∗)

Define a partial order on partitions as follows. Given two partitions λ = (λ1 ≥

λ2 ≥ · · ·λk) and µ = (µ1 ≥ µ2 ≥ · · ·µj) of n we set λ ≥ µ if

i∑
l=1

λ� ≥
i∑
�=1

µ�, for all i = 1, 2, · · · , k.

The following result of M. Gerstenhaber (cf. [H] § 3.10) shows that this order
corresponds to inclusion of nilpotent orbit closures:

Theorem 2.4 — Given two partitions λ and µ of n one has λ ≥ µ if and only if
�λ ⊃ �µ.

2.3 Given a partition λ of n fill the boxes of Dλ with n distinct positive integers.
If the entries increases in rows from left to right and in columns from top to bottom
we call such an array a Young tableau. If the numbers in Young tableau form a set
of integers from 1 to n we call it standard. Let Tn be the set of standard Young
tableaux of size n.

The shape of a Young tableau T is defined to be a Young diagram from which T

was built. It defines a partition of n which we denote shT.

The Robinson - Schensted correspondence w �→ (Q(w), R(w)) gives a bijection
(see, for example [Kn]) from the symmetric group Sn onto the pairs of standard
Young tableaux of the same shape. By R. Steinberg [St1] for all w, y ∈ Sn one has
�w = �y iff Q(w) = Q(y). This parameterizes the set of orbital varieties by Tn.
Moreover shQ(w) = λ if and only if �w is contained in �λ.

We set �T := �w if Q(w) = T, PT := P�T and �T := ��T
.

Let T be some Young tableaux with shT = λ = (λ1, · · · ). Denote by T ij its ij-th
entry. If k is the entry T ij of T, set rT (k) = i and cT (k) = j.

For i : 1 ≤ i ≤ λ̂1 set T i := (T i1, · · · , T
i
λi
). This is the ordered set of entries of the

i-th row. For each T ∈ Tn we define wr(T ) ∈ Sn through

wr(T ) :=

(
1 · · · · · · · · ·n

T λ̂1 · · · T 1

)
.

By [M3], § 3.2.2 Q(wr(T )) = T.
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