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Abstract

Let O be a nilpotent orbit in the Lie algebra 3[,,(C) and let V be an orbital
variety contained in O. Let P be the largest parabolic subgroup of SL(n,C)
stabilizing V. We describe nilpotent orbits such that all the orbital varieties
in them have a dense P orbit and show that for n big enough the majority of
nilpotent orbits do not fulfill this.

Résumé

Soit O une orbite nilpotente dans lalgébre de Lie $[,,(C) et soit V une
variété orbitale contenue dans O. Soit P le plus grand sous-groupe parabolique
de SL(n, C) stabilisant V. Nous décrivons les orbites nilpotentes dont toutes
les variétés orbitales contiennent une P-orbite dense et montrons que pour n
assez grand la majorité des orbites nilpotentes n’ont pas cette propriété.

1 Introduction

1.1 Let G be a connected semisimple finite dimensional complex algebraic group.
Let g be its Lie algebra and U(g) be the enveloping algebra of g. Consider the
adjoint action of G on g. A G orbit O in g is called nilpotent if it consists of
nilpotent elements.

Fix some triangular decomposition ¢ = 1@ h@ n~. An irreducible component
of 0 N1 is called an orbital variety contained in 0. Orbital varieties play a key role
in Springer’s Weyl group representations and in the primitive ideal theory of U(g).

The last can be detailed as follows. Since g is semisimple we can identify g with
g* through the Killing form. This identification gives an adjoint orbit a symplectic
structure. Let V" be an orbital variety contained in 0. After N. Spaltenstein [Sp] and
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R. Steinberg [St] one has
(%) dim Y = '/, dim 0.

Moreover it was pointed out by A. Joseph [J] that this implies that an orbital
variety is a Lagrangian subvariety of its nilpotent orbit. According to the orbit
method philosophy one would like to attach an irreducible representation of U(q)
to V. This can be naturally implemented in the case of g = 3[,, where there exists
a one to one correspondence between the set of primitive ideals of U(g) containing
the augmentation ideal of its centre and the set of orbital varieties in g. Moreover as
it is shown in [M2| in this case ¥ is the associated variety of the corresponding
simple highest weight module so that orbital varieties give a natural geometric
understanding of the classification of primitive ideals. Hence the study of orbital
varieties in 3[,, is especially interesting.

1.2 Orbital varieties remain rather mysterious objects. The only general description
was given by R. Steinberg [St] and is as follows. Let R C §* be the set of roots, R* be
the choice of positive roots defining 11 and II C R™ be the corresponding set of simple
roots. Let W be the Weyl group of (g, f)) acting on R. Let B be the Borel subgroup
of G corresponding to the Borel subalgebra b = § @ n. Recall that n = @ p+ Xa
(resp.n” = @, c_p+ Xao) where X, is the root subspace corresponding to a. For
w € W set NN := P, ¢ g+ r(r+) Xa- For each subgroup H of G let H(nN" 1) be
the set of H conjugates of nN™ 1. One easily sees that there exists a unique nilpotent
orbit O such that G(n N n) = 0. Then ¥, = B(nN¥ n) N O is an orbital variety
and the map ¢ : w — V', is a surjection of W onto the set of orbital varieties.

This description is not very satisfactory from the geometric point of view since a
B invariant subvariety generated by a linear space is a very complex object. One of
the attempts to give a reasonable description of an orbital variety is the following
conjecture proposed by S. P. Smith.

Given an orbital variety V' let Py be its stabilizer. This is a standard parabolic
subgroup of G. We say that an orbital variety V" is of S type if there exists a dense
P+ orbit in it. We say that a nilpotent orbit O is of S type if all its orbital varieties
are of S type.

Conjecture 1.1 (S. P. Smith) — In 31, all orbital varieties are of S type.

The truth of this conjecture would give a more elegant and simple description
of orbital varieties. For a given orbital variety closure it would provide a way to
construct a resolution of its singularities and be the first step towards a description
of its ideal of definition. It could also provide a natural way to define orbital varieties
in the case of quantum groups. These implications made the conjecture (suggested
by S.P. Smith some ten years ago) quite attractive.
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1.3 The conjecture is true for 3[,, when n < 8 as shown by E. Benlolo in [B]. Yet
here we show that the conjecture is false in general.

In 2.5 we give the first counter-example to the Smith conjecture which appears in
3l, and is the only counter-example for n < 9. We give some other counter-examples
which we use in what follows.

Further we investigate the situation for n > 0. In § 3 we give sufficient conditions
for an orbit to be not of S type. This can be explained as follows.

Take @ = 3[,,. Consider 3[; for ¢ < n as a Levi subalgebra [, ; of g (cf. 3.2). Set
n,; =nnl, and define the projection m, ; : 1 — N, ;. A result of [M1] is that m, ;
takes an orbital variety closure in 3[,, to an orbital variety closure in 3.

Given an orbital variety V' let (V') be its T-invariant (cf. 2.4). As we explain in 3.2
if ¥ is of S type and «; & 7(V) then 71 (V) must be of S type. From this given an
orbital variety not of S type in 3[; we show how to construct orbital varieties not
of S type in 3[,, for n > i.

1.4 In § 4 we give sufficient conditions for an orbit to be of S type. This can be
explained as follows.

Orbital varieties are irreducible components of ON1n. Yet they are as far as possible
of being disjoint. Indeed after N. Spaltenstein [Sp| for any two orbital varieties
V,V" C O there exist a chain of orbital varieties V' = ¥'1,--- ,V, = V¥’ C 0 with
codim(V; NV;4,) =1foralli e {1,2,---  k—1}.

In 3(,, if a nilpotent orbit is neither regular nor minimal it contains more than one
orbital variety. Following A. Joseph we apply Vogan’s analysis [V] to orbital varieties.
For a given orbital variety V" this defines the orbital variety Jo5(7") (cf. 4.2). One
has codim (T og(1)NYV) = 1 and for any given pair of orbital varieties V', ¥ C O one
may pass from V" to ¥’ by a sequence of I ,g operations. This refines Spaltenstein’s
result.

In each nilpotent orbit there exists a Bala-Carter component (cf. 4.3). As shown
by R. Carter in [C| a Bala-Carter component contains a dense B orbit. One can use
such orbital varieties and Vogan’s analysis to construct other orbital varieties of .S
type; but this does not lead to all orbital varieties of S type. The problem is that
the dimension of Pg_, ¢ can differ by more than one from the dimension of Py
and then we cannot conclude that V' of S type implies T o3(V") of S type. Generally
speaking this is the reason that the orbital varieties not of S type appear. However
the algorithm we obtain is not decisive; but it helps to construct orbital varieties of
S type and to give counter-examples to conjecture 1.1.

To show that a specific nilpotent orbit is of S type we find in it enough orbital
varieties with a dense B orbit so that applying Vogan’s analysis we get all the orbital
varieties in the given orbit. These computations compose the main part of § 4 and
are technically the most difficult part of the work. A few orbits described at the end
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of § 4 stay unclassified. These cases apparently require more subtle computations.

2 Counter-examples
Lemma2.l — Fiz w € W. If the orbital variety V', has a dense Py orbit P then
PN MmN n)# 0.

It is convenient to replace 3[,, by g = gl,. This obviously makes no difference.
Note that the adjoint action of G = GL,, on ¢ is just a conjugation.

Let 1 be the subalgebra of strictly upper-triangular matrices in ¢ and B be the
(Borel) subgroup of upper-triangular matrices in G. All parabolic subgroups we
consider further are standard, that is contain B.

Let e;; be the matrix having 1 in the ¢j entry and 0 elsewhere. Set IT := {¢; ?;11.
Take ¢ < j. Then for a = Zi:i ay, the root space X, = Ce; j+, and the root space
X_a=Cejti,.

We identify W with the permutation subgroup S,, of GL,. For a € II let s, be
the corresponding fundamental reflection and set s; = sq,.

Let [, ] denote the Lie product on g given here by commutation in End V. For a
standard parabolic subgroup P of G we set p := Lie P which is a standard parabolic
subalgebra of g, that is contains b.

Lemma2.2 — Take M € g and a parabolic subgroup P of G. One has
dim PM = dim[p, M].

Combining these two lemmas we obtain

Corollary 2.3 — Fiz w € W. The orbital variety V., is of S type if and only if for
some M € nN¥ n one has

dim[p, M| = dim V.

2.2 Nilpotent orbits in 3[, are parameterized by Young diagrams. Orbital
varieties are parameterized by standard Young tableaux. Let us explain these
parameterizations.

In 3[, or gl, each nilpotent orbit O is described by its Jordan form. A Jordan
form in turn is parameterized by a partition A = (A; > Aa--- A > 0) of n giving
the length of Jordan blocks. We denote by O the nilpotent orbit determined by A.

It is convenient to represent a partition A = (Ay > Ay > -+ > A\ > 0) of n
as a Young diagram D), that is an array of k rows of boxes starting on the left
with the i-th row containing A; boxes. The dual partition A = (A, A - -+ ) is defined
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by setting Y equal to the length of the i—th column of the diagram D, that is
M=t N = d).
One has (cf. [H] § 3.8)

k
(%) dim 0y = n? —25\12
i=1

Define a partial order on partitions as follows. Given two partitions A = (A; >
Ao > - Ap) and po= (1 > pg > -+ i) of nowe set A > pif

Z)\ZZZW, foralli=1,2,--- k.
=1 =1

The following result of M. Gerstenhaber (cf. [H] § 3.10) shows that this order
corresponds to inclusion of nilpotent orbit closures:

Theorem 2.4 — Given two partitions A and p of n one has X > p if and only if
6,\ D) 6#'

2.3 Given a partition A of n fill the boxes of D) with n distinct positive integers.
If the entries increases in rows from left to right and in columns from top to bottom
we call such an array a Young tableau. If the numbers in Young tableau form a set
of integers from 1 to n we call it standard. Let T, be the set of standard Young
tableaux of size n.

The shape of a Young tableau T is defined to be a Young diagram from which T’
was built. It defines a partition of n which we denote shT.

The Robinson - Schensted correspondence w — (Q(w), R(w)) gives a bijection
(see, for example [Kn|) from the symmetric group S,, onto the pairs of standard
Young tableaux of the same shape. By R. Steinberg [St1] for all w,y € S,, one has
Vw =V, iff Q(w) = Q(y). This parameterizes the set of orbital varieties by T,.
Moreover sh Q(w) = X if and only if V', is contained in O}.

We set V' :=Ty, if Qw) =T, Prp:=Py, and by := Dy ..

Let T be some Young tableaux with shT = A = (Aq,---). Denote by Tj its ij-th
entry. If k is the entry T} of T, set (k) =i and cr(k) = j.

Fori:1<i<\ setTi:= (TE, - ,T};i). This is the ordered set of entries of the
i-th row. For each T € T,, we define w,.(T) € S,, through

wp(T) = (T;\l N > '
By [M3], § 3.2.2 Q(w,(T)) = T.
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