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Abstract
Let H be a commutative faithfully flat Hopf algebra over a commutative

ring R. We give an exact sequence describing the group of H-Galois coobjects.
The other terms in the sequence are Harrison cohomology groups. This
generalizes an exact sequence due to Early and Kreimer and Yokogawa.

Résumé
Soit H une algèbre de Hopf commutative fidèlement plate sur un anneau

commutatif R. Nous étudions une suite exacte qui décrit le groupe des co-
objets H-Galois. Les autres termes de la suite sont des groupes de cohomologie
de Harrison. Cela généralise une suite exacte due à Early, Kreimer et
Yukogawa.

Introduction

Let H be a finite (i.e. a finitely generated projective) cocommutative Hopf algebra
over a commutative ring R. Chase and Sweedler [4] introduced the notion of H-
Galois object, generalizing classical Galois theory. Isomorphism classes of H-Galois
objects form a group Gal(R,H). The multiplication on Gal(R,H) is induced by
the cotensor product �H . Early and Kreimer [5] and, independently, Yokogawa [13]
showed that Gal(R,H) fits into an exact sequence

1−→H2(H,R,�m)
α
−→Gal(R,H)

β
−→H1(H,R,Pic)

γ
−→H3(H,R,�m)(1)

Here the cohomology groups are Sweedler cohomology groups, cf. [11]. The definition
of a Galois object can be generalized to the situation where H is not necessarily
finitely generated or projective ([9]). The idea is the following: consider an H-
comodule algebra A. Then we have a pair of adjoint functors between the category
R-mod and the category of relative (A,H)-modules. This category consists of
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R-modules equipped with an A-action and an H-coaction satisfying a certain
compatibility relation. If H is finite, then relative Hopf modules correspond to
(right) Aopp#H∗-modules, and this explains the relation with the theory of Chase
and Sweedler. If the adjunction is a category equivalence, then we say that A is an
H-Galois object.
The question that we are interested in is the following: can we generalize the exact
sequence (1) to the situation where the Hopf algebra H is not necessarily finitely
generated and projective? The proofs exhibited in [5] and [13] make intensive use of
the fact that the Hopf algebra H (and the H-Galois objects) are finitely generated
and projective. This allows to switch back and forth between H-comodule algebras
andH∗-module coalgebras. For example, the map β is given by forgetting the algebra
structure, followed by taking the dual. We then obtain an H∗-module, representing
a Sweedler cocycle. Of course these duality arguments no longer hold in the case
where H is infinite. Another problem is the fact that the cotensor product is not
naturally associative (unless we work over a field instead of a commutative ring).
Moreover, we cannot prove that the cotensor product of two H-Galois objects is
again an H-Galois object.
In this note, we propose to work with H-module coalgebras instead of H-comodule
algebras. In [9], Schneider introduces a Galois theory for H-module coalgebras,
leading to the notion of H-Galois coobject. If H is finite, then the dual of an H-
Galois coobject is an H∗-Galois object. We will show that, for H commutative, the
set of isomorphism classes of H-Galois coobjects forms a group Galco(R,H). The
operation is now induced by the tensor product ⊗H . Gal

co(R,H) fits into an exact
sequence, and, in the case where H is finite, a duality argument shows that the
exact sequence (1) follows from this new sequence.
When we try to add the H3-term to the sequence, we face a phenomenon that is
typical for the infinite case. We have to restrict attention to a subgroup of the group
of Galois coobjects. This subgroup is defined as follows: consider Galois coobjects
that have normal basis after we take a faithfully flat base extension. We will say
that such a Galois coobject has a geometric normal basis. Thus a Galois coobject
C has a geometric normal basis if C ⊗ S ∼= H ⊗ S as H ⊗ S-modules for some
faithfully flat commutative R-algebra S. If H is finite then all Galois coobjects have
a geometric normal basis, we can take a Zariski covering for S. We have to apply
a similar construction for the Picard group, and then we can state the generalized
exact sequence, see Theorem 3.4.
Along the way, we obtain two results that seem to be new even in the finite case:
we have an explicit construction for the inverse of an H-Galois coobject (Theorem
2.2), and, conversely, if an H-module coalgebra is a twisted form of H as an H-
module and is invertible as an H-module coalgebra, then it is an H-Galois coobject
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(Corollary 3.5).
Some additional difficulties arise if we try to construct a similar theory for Galois
objects; moreover, the formalism turns out to be much more complicated in this
situation, and this is why the author has the opnion that the coalgebra formalism
is the natural formalism for this type of problem.
For standard results and terminology about Hopf algebras, we refer to the literature,
e.g. [1], [7] or [11]. The reader should keep in mind that we work here over a
commutative ring, while the monographs cited above restrict attention to Hopf
algebras over a field.

1 Notations and preliminary results

Throughout this paper, H will be a commutative Hopf algebra over a commutative
ring R, and assume that H is faithfully flat as an R-module. For the comultiplication
on H we will use Sweedler’s sigma notation ([10]):

∆(h) =
∑
h1 ⊗ h2

A left H-module coalgebra is an R-module C such that C is a left H-module and an
R-coalgebra satisfying the compatibility relations

∆C(h⇀c) =
∑
(h1⇀c1)⊗ (h2⇀c2)(2)

εC(h⇀c) = εH(h)εC(c)(3)

for all h ∈ H and c ∈ C. The left action of H on C is denoted by ⇀. If H is
commutative, it makes no sense to distinguish between left and right H-module
coalgebras.
Let C be a left H-module coalgebra. Then a left (H,C)-Hopf module M is an
R-module that is a left H-module and a left C-comodule such that

ρM (h ·m) =
∑
h1⇀m(−1) ⊗ h2m(0)(4)

for all m ∈ M and h ∈ H . In the sequel, CH�(H) will denote the category of left
(H,C)-Hopf modules and H-linear C-colinear maps.

Proposition 1.1 — With notations as above, consider the functors

F : C
H�(H)−→R-mod :M �→ R⊗H M =M

G : R-mod−→C
H�(H) : N �→ C ⊗N

Then G is a right adjoint to F .
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Proof. This result is a special case of [3, Theorem 1.3]. We restrict to giving a brief
sketch of the proof. R is an H-module via the map ε. In fact, M =M/KerεM , and
in M we have the following identity:

hm = ε(h)m

for all h ∈ H and m ∈ M . For any M ∈ C
H�(H) and N ∈ R-mod we consider the

maps

α : HomCH(M,C ⊗N)−→HomR(M,N)

β : HomR(M,N)−→Hom
C
H(M,C ⊗N)

given by

α(f)(m) = (εC ⊗ IN )(f(m))

β(g)(m) =
∑
m(−1) ⊗ g(m(0))

for all f ∈ HomC
H�(H)(M,C⊗N), g ∈ HomR(M,N) and m ∈M . A straightforward

verification shows that f and g are well-defined and each others inverses. This finishes
the proof.

From the adjointness of the functors F and G in Proposition 1.1, it follows that
for all M ∈ C

H�(H) and N ∈ R-mod we have natural maps

ψM :M−→G(F (M)) = C ⊗M

φN : F (G(N)) = C ⊗N−→N

given by

ψM (m) =
∑
m(−1) ⊗m(0)

φN (
∑
i

ci ⊗ ni) =
∑
i

ε(ci)ni

Definition 1.2 — With notations as above, an H-module coalgebra C is called
an H-Galois coobject if the functors F and G from Proposition 1.1 are inverse
equivalences, or, equivalently, if ψM and φN are isomorphisms for all M ∈ C

H�(H)

and N ∈ R-mod.

We will now establish some necessary and sufficient conditions for an H-module
coalgebra to be an H-Galois coobject. It is clear that φN is an isomorphism for all
N ∈ R-mod if and only if the canonical map

φC : C−→R : c �→ ε(c)
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is an isomorphism.
Observe thatH⊗C can be given the structure of left (H,C)-Hopf module as follows:

k(h⊗ c) = kh⊗ c

ρH⊗C(h⊗ c) =
∑
h1⇀c1 ⊗ h2 ⊗ c2

for all h, k ∈ H and c ∈ C. It is readily verified that condition 4 is satisfied:

ρH⊗C(kh⊗ c) =
∑
k1h1⇀c1 ⊗ k2h2 ⊗ c2

=
∑
k1(h⊗ c)(−1) ⊗ k2(h⊗ c)(0)

A necessary condition forM to be an H-Galois coobject is therefore that δ = ψH⊗C
is an isomorphism. Let us describe δ. First we remark that F (H⊗C) = H⊗C = C,
since H ∼= R. Indeed, the maps

I ⊗ εH : H = R⊗H H−→R η ⊗ 1 : R−→H = R⊗H H

are well-defined and each others inverses.
Now G(F (H ⊗ C)) = C ⊗ C, where H acts and C coacts on the first factor:

h(c⊗ d) = h⇀c⊗ d

ρC⊗C(c⊗ d) =
∑
c1 ⊗ c2 ⊗ d

δ = ψH⊗C is given by the formula

δ(h⊗ c) =
∑
(h1⇀c1)⊗ ε(h2)c2 =

∑
(h⇀c1)⊗ c2

Theorem 1.3 — Let H be a commutative, faithfully flat Hopf algebra. For a left
H-module coalgebra C, the following conditions are equivalent:

1. C is an H-Galois coobject;

2. – C = R;

– δ = ψH⊗C : H⊗C−→C⊗C : h⊗c �→
∑
(h⇀c1)⊗c2 is an isomorphism;

– C is flat as an R-module.

3. – δ = ψH⊗C : H⊗C−→C⊗C : h⊗c �→
∑
(h⇀c1)⊗c2 is an isomorphism;

– C is faithfully flat as an R-module.

Proof. For full detail, we refer to [9] or to [3], where more general results are given.
The reader might object that the results in [3] are valid only if we work over a field k,
but it can be verified that the above Theorem is true over a commutative ring.

Corollary 1.4 — Let H be a commutative, faithfully flat Hopf algebra. Then H
viewed as a left H-module coalgebra is an H-Galois coobject.
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