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ON THE FIRST VAFA-WITTEN BOUND
FOR TWO-DIMENSIONAL TORI

by

Nicolae Anghel

Abstract. — In this paper we explicitly compute the first Vafa-Witten bound for a
two-dimensional torus, namely the best uniform upper bound for the first eigenvalue
of the family of twisted (by arbitrary vector potentials) Dirac operators on a flat
two-torus. Starting with an arbitrary flat metric we give either an exact answer or a
precise algorithm for producing an answer. As a by-product we develop a constructive
way of implementing the projection map from the Poincaré upper half-plane onto the
standard fundamental domain for its SL(2, Z)-action.

Résumé (Sur la première borne de Vafa-Witten pour les tores de dimension deux)
Dans cet article nous calculons explicitement la première borne de Vafa-Witten

pour un tore de dimension 2, c’est-à-dire la meilleure borne supérieure pour la pre-
mière valeur propre de la famille d’opérateurs de Dirac couplés à des potentiels vec-
toriels arbitraires, définis sur un tore plat de dimension 2. Pour une métrique plate
arbitraire nous donnons soit la solution exacte de ce problème soit un algorithme
précis pour en produire une. Une conséquence de nos résultats est une réalisation
constructive de la projection du demi-plan de Poincaré sur le domaine fondamental
de l’action de SL(2, Z) sur celui-ci.

1. Introduction

Let M be a fixed compact Riemannian spin manifold with spinor bundle S and
Dirac operator �∂. For any Hermitian vector bundle E with metric connection A form
the twisted Dirac operator �∂A acting on S ⊗ E. In a remarkable paper [VW], also
[A], Vafa and Witten proved, among other things, that if the discrete eigenvalues of
�∂A are indexed by increasing absolute value,

|λ1| ≤ |λ2| ≤ . . . ,
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then there is a bound C1, which depends on M but not on the twisting data (E,A),
such that

(1.1) |λ1| ≤ C1.

Subsequently, Moscovici [M] extended the inequality (1.1) to noncommutative geo-
metric spaces, in the sense of Connes [C], which have finite topological type and satisfy
rational Poincaré duality in K-theory.

Vafa and Witten [loc.cit.] also addressed the problem of finding the best bound
C1 in (1.1), if M is the d-dimensional torus Td with angular variables φ1, φ2, . . . , φd,
and flat metric ds2 =

∑
i,j gijdφ

idφj . They concluded that in this case the best C1 is

(1.2) max
a∈Rd

min
m∈Zd

√∑
i,j

gij(mi − ai)(mj − aj),

where
[
gij
]
is the inverse of the constant positive definite matrix [gij ]. For instance, if

the metric tensor is diagonal with gij = ciδ
ij , then (1.2) equals

√
c1 + c2 + · · · + cd/2.

It is certainly desirable to have an explicit formula for (1.2), in terms of the matrix[
gij
]
or its invariants. This problem becomes geometrically intuitive if one views a d-

dimensional flat torus as a quotient Rd/L, where L is a lattice in Rd of maximal rank
[MH]. If L has basis {v1, v2, . . . , vd} then the metric is given by gij = 〈vi, vj〉, where
〈, 〉 denotes the standard inner product in Rd. It turns out that for some lattices the
Vafa-Witten bound is easy to calculate while for others it is not.

To see just how this distinction arises we will look now at flat metrics on a torus
from the viewpoint of homogeneous spaces. The space Met(Td) of flat metrics on Td

can be identified with the homogeneous space GL(d,R)/O(d) [B] under the trans-
formation

(1.3) GL(d,R)/O(d) � Φ̂ −→ [gij ] ∈ Met(Td),

where if Φ ∈ GL(d,R) then [gij ] is given by

gij := 〈Φ−1ei,Φ−1ej〉,

(e1, e2, . . . , ed) being the standard basis in the Euclidean space Rd.
In other words, [gij ] =

(
Φ−1

)t Φ−1, or equivalently
[
gij
]

= ΦΦt. It follows that
under the identification (1.3) the first Vafa-Witten bound becomes

(1.4) max
a∈Rd

min
m∈Zd

√
〈Φt(m− a),Φt(m− a)〉.

It is obvious (see also Proposition 2.2, c)) that a conformal change of the metric
[gij ] by a factor r changes (1.2) by a factor of 1/

√
r. As a result, it suffices to

calculate (1.2) for metrics of fixed volume, or equivalently to replace GL(d,R)/O(d)
with SL(d,R)/ SO(d) in (1.4).
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Notice now that (1.4) factors to the double coset space SL(d,Z)\ SL(d,R)/ SO(d).
Indeed, if Φ ∈ SL(d,R) and Ψ ∈ SL(d,Z) then, for a ∈ Rd,

min
m∈Zd

√
〈(ΨΦ)t(m − a), (ΨΦ)t(m− a)〉 = min

m∈Zd

√
〈Φt (m− Ψta) ,Φt (m− Ψta)〉.

In conclusion, one might be satisfied with calculating (1.2) only for metrics corres-
ponding to a fundamental domain representing the space SL(d,Z)\ SL(d,R)/ SO(d),
such as the Siegel domain [R].

This is the first in a series of two papers addressing the problem of finding an
explicit formula for the Vafa-Witten bound (1.2). In it we restrict ourselves to two-
dimensional tori and work directly with a flat metric [gij ], whose inverse is g11 = A,
g12 = g21 = B, g22 = C, where A,B,C are real numbers such that A > 0, C > 0,
and AC − B2 > 0. The computation of the Vafa-Witten bound in two dimensions
is so classical in scope that it can be handled independently within several areas of
mathematics: bilinear form theory, lattice theory, modular group theory. We choose
to treat the problem using the framework of bilinear forms simply because this is
how Vafa and Witten state their result. The lattice and modular group approaches
to flat tori do appear, but only indirectly, either in some of the proofs or in the
subsequent interpretations and comparisons. The second paper in the series, to appear
elsewhere, will be dedicated to higher dimensional tori and will deal only with metrics
corresponding to a Siegel domain.

We summarize now our main results, proven below in Theorem 2.5, Theorem 3.8,
and Theorem 4.7.

a) If min{A,C} ≥ 2|B|, then the first Vafa-Witten bound equals

1
2

√
AC(A+ C − 2|B|)

AC −B2

b) If min{A,C} < 2|B|, then the transformation (3.3) given in Section 3 below ap-
plied to the inverse of the metric tensor a certain number of times, number controlled
by the size of (AC −B2)/(min{A,C})2, reduces the problem to Case a).

c) Metrics corresponding to points in the standard fundamental domain F asso-
ciated to the action of SL(2,Z) on the Poincaré upper half plane H do satisfy the
inequality min{A,C} ≥ 2|B|, and so Case a) applies to them. Arbitrary metrics can
then be investigated by noticing that the transformation (3.3) is the basic step of an
algorithm that implements the quotient map

SL(2,R)/ SO(2) −→ SL(2,Z)\ SL(2,R)/ SO(2),

viewed as a map from H to F .
In addition, we show that the above results still hold if min{A,C} is compared to

|B| rather than 2|B| (Corollary 3.18).
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2. The Particular Case min{A,C} ≥ 2|B|

Equip the two-dimensional torus T2 with a flat metric [gij ], whose inverse is g11 =
A, g12 = g21 = B, g22 = C, where A,B,C are real numbers such that A > 0, C > 0,
and AC −B2 > 0. Then the first Vafa-Witten bound λ1 = λ1(A,B,C) is given by
(2.1)
λ1 = max

(a1,a2)∈R2
min

(m1,m2)∈Z2

√
A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

In this section we will calculate λ1 explicitly in the particular case min{A,C}
≥ 2|B|. We start with some obvious properties of λ1(A,B,C).

Proposition 2.2. — If λ1(A,B,C) is defined by (2.1) then
a) λ1(A,B,C) is symmetric in A and C, i.e., λ1(A,B,C) = λ1(C,B,A).
b) λ1(A,B,C) = λ1(A, |B|, C)
c) If r > 0, then λ1(rA, rB, rC) =

√
rλ1(A,B,C)

d) The set of pairs (a1, a2) ∈ R2 where λ1(A,B,C) occurs intersects [0, 1]2 and is
symmetric with respect to the point (1/2, 1/2).

Proof. — Let fA,B,C : R2 → [0,∞), be given by
(2.3)
fA,B,C(a1, a2) := min

(m1,m2)∈Z2

(
A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

)
Then the proposition follows from the following properties of fA,B,C , respectively.

a) fA,B,C(a1, a2) = fC,B,A(a2, a1)
b) fA,−B,C(a1, a2) = fA,B,C(a1,−a2)
c) If r > 0, then frA,rB,rC = rfA,B,C

d) fA,B,C(a1 + 1, a2 + 1) = fA,B,C(a1, a2) = fA,B,C(1 − a1, 1 − a2).

Remark 2.4. — According to the above proposition in order to find λ1(A,B,C) it is
enough to assume that A ≥ C and B ≥ 0 (from a) and b)), to normalize the metric
tensor such that AC −B2 = 1 (from c)), and to look for (a1, a2) ∈ [0, 1]2 maximizing
fA,B,C only in a suitable “half” of [0, 1]2, for instance [0, 1] × [0, 1/2] (from d).

Theorem 2.5. — Assume that the torus T2 is equipped with a flat metric [gij ] ↔
(A,B,C) such that min{A,C} ≥ 2|B|. Then the first Vafa-Witten bound is given by
the formula

(2.6) λ1(A,B,C) =
1
2

√
AC(A+ C − 2|B|)

AC − B2

Proof. — By Proposition 2.2 and Remark 2.4 it suffices to prove Formula 2.6 for
A ≥ C ≥ 2B ≥ 0 and AC − B2 = 1. As a result, B2 ≤ 1/3. The theorem is then
equivalent to showing that

(2.7) max
(a1,a2)∈[0,1]×[0,1/2]

fA,B,C(a1, a2) =
AC(A + C − 2B)

4
,
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where fA,B,C is the function given by Equation 2.3.
To this end fix (a1, a2) ∈ [0, 1] × [0, 1/2]. For (m1,m2) ∈ Z2,

A(m1 − a1)2 + 2B(m1 − a1)(m2 − a2) + C(m2 − a2)2

= C

(
AC −B2

C2
(m1 − a1)2 +

(
B

C
(m1 − a1) + (m2 − a2)

)2
)

=
1
C

(m1 − a1)2 + C

(
B

C
(m1 − a1) + (m2 − a2)

)2

=
1
C

(m1 − b1)2 + C

(
B

C
m1 +m2 − b2)

)2

,

where

b1 = a1 and b2 =
B

C
a1 + a2.

Thus,

(2.8) fA,B,C(a1, a2) = min
(m1,m2)∈Z2

(
1
C

(m1 − b1)2 + C

(
B

C
m1 +m2 − b2)

)2
)
.

By choosing an integer m1 such that |m1 − b1| ≤ 1/2, followed by an integer m2 such
that |BCm1 +m2 − b2| ≤ 1/2, one sees that

(2.9) fA,B,C(a1, a2) ≤
1

4C
+
C

4
.

We claim now that fA,B,C(a1, a2) occurs for (m1,m2) ∈ {(0, 0), (0, 1), (1, 0)}. Indeed,
let (m0

1,m
0
2) be an integer pair where fA,B,C(a1, a2) occurs. Then |m0

1−b1| < 1, since
otherwise (2.8) implies that

fA,B,C(a1, a2) ≥
1
C
,

which in conjunction with (2.9) gives C2 ≥ 3. But then 1 = AC − B2 ≥ 3 − 1/3, a
contradiction. Since b1 = a1 ∈ [0, 1], it follows that m0

1 ∈ {0, 1}.
If m0

1 = 0, then

fA,B,C(a1, a2) =
b21
C

+ min
m2∈Z

C(m2 − b2)2,

and so m0
2 can be chosen from {0, 1} , since b2 = B

C a1 + a2 ∈ [0, 1].
If m0

1 = 1, then

fA,B,C(a1, a2) =
(1 − b1)2

C
+ min

m2∈Z
C

(
m2 +

B

C
− b2

)2

,

and since B
C − b2 = B

C (1− a1)− a2 ∈ [−1/2, 1/2], m0
2 can be taken to be 0. The claim

follows.
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