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FOURTH ORDER EQUATIONS
IN CONFORMAL GEOMETRY

by

Sun-Yung A. Chang & Paul C. Yang

Abstract. — In this article we review some recent work on fourth order equations
in conformal geometry of three and four dimensions. We discuss an existence result
for a Yamabe-type equation in dimension three. We examine a generalization of the
Cohn-Vossen inequality to dimension four. Finally, we review an application of the
fourth order equation to a fully nonlinear equation in dimension four that involves
the Ricci tensor.

Résumé (Équations d’ordre quatre en géométrie conforme). — Dans cet article, nous
présentons un travail récent sur des équations d’ordre quatre en géométrie conforme
de dimensions trois et quatre. On présente un résultat d’existence d’une équation
de type Yamabe en dimension trois. On examine une généralisation de l’inégalité
de Cohn-Vossen en dimension quatre. Finalement, nous donnons une application, en
dimension quatre, de l’équation d’ordre quatre à une équation non linéaire faisant
intervenir le tenseur de Ricci.

1. Introduction

In this article we discuss some new developments in the fourth order equations in
conformal geometry of three and four dimensions. We refer the reader to [CY2] for
a survey of some earlier work in this area.

On a Riemannian manifold (Mn, g) of dimension n, the Laplace Beltrami operator
is the natural geometric operator. Under conformal change of metric gw = e2wg,
when the dimension is two, ∆gw is related to ∆g by the simple formula:

(1) ∆gw(ϕ) = e−2ω∆g(ϕ) for all ϕ ∈ C∞(M2).
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In dimension greater than two, similar transformation property continues to hold
for a modification of the Laplacian operator called the conformal Laplacian operator
L ≡ − 4(n−1)

n−2 ∆ +R where R is the scalar curvature of the metric. We have

(2) Lgw(ϕ) = e−
n+2

2 ωLg

(
e

n−2
2 ωϕ

)

for all ϕ ∈ C∞(M).
In general, we call a metrically defined operatorA conformally covariant of bidegree

(a, b), if under the conformal change of metric gω = e2ωg, the pair of corresponding
operators Aω and A are related by

(3) Aω(ϕ) = e−bωA(eaωϕ) for all ϕ ∈ C∞(Mn).

A particularly interesting such operator is a fourth order operator on 4-manifolds
discovered by Paneitz [Pa] in 1983:

(4) Pϕ ≡ ∆2ϕ+ δ

(
2
3
RI − 2 Ric

)
dϕ

where δ denotes the divergence, d the de Rham differential and Ric the Ricci tensor
of the metric. The Paneitz operator P is conformal covariant of bidegree (0, 4) on
4-manifolds, i.e.

(5) Pgw (ϕ) = e−4wPg(ϕ) for all ϕ ∈ C∞(M4).

A fourth order curvature invariant Q = 1
12{−∆R + R2 − 3|Rc|2} is associated to

the Paneitz operator:
Pw + 2Q = 2Qwe

4w.

In dimension four, the Paneitz equation has close connection with the Chern-Gauss-
Bonnet formula. For a compact oriented 4-manifold,

(6) χ(M) =
1

4π2

∫
M

(
|W |2

8
+Q)dV

where χ(M) denotes the Euler characteristic of the manifold M , and |W |2= norm
squared of the Weyl tensor. Since |W |2dV is a pointwise invariant under conformal
change of metric, QdV is the term which measures the conformal change in formula
(6).

For a 4-manifold with boundary, [CQ] defines a third order boundary operator P3
which is conformally covariant of bidegree (1, 3):

(7) P3 = −1
2
∂

∂n
∆ − ∆̃

∂

∂n
− 2

3
H∆̃ + Lαβ∇̃α∇̃β +

(1
3
R−RαNαN

) ∂
∂n

+
1
3
∇̃H · ∇̃

where ∂n is the unit interior normal, ∆̃ is the boundary Laplacian, H is the mean
curvature, Lαβ the second fundamental form, and ∇̃ the boundary gradient. The
boundary P3 operator defines the third order curvature invariant T through the equa-
tion:

(8) −P3w + Twe
3w = T on ∂M
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FOURTH ORDER EQUATIONS IN CONFORMAL GEOMETRY 157

where

(9) T =
1
12

∂

∂n
R+

1
6
RH − RαNβNLαβ +

1
9
H3 − 1

3
TrL3 − 1

3
∆̃H.

For 4-manifolds with boundary, the Chern-Gauss-Bonnet formula is supplemented
by

(10) χ(M) =
1

4π2

∫
M

(
|W |2

8
+Q)dV +

1
4π2

∫
∂M

(L+ T )dΣ

where Ldσ is a pointwise conformal invariant of the boundary.
In order to find geometric interpretation for the fourth order invariantQ, we formu-

lated an analogue ([CQY1]) of the Cohn-Vossen inequality for complete surfaces with
finite total curvature and derived ([CQY2]) a compactification criteria for conform-
ally flat 4-manifold using the curvature invariant Q and the assumption of geometric
finiteness.

In general dimensions different from four there is also a natural fourth order op-
erator P , which enjoys the conformal covariance property with respect to conformal
changes in metrics. The relation of this operator to the Paneitz operator in dimen-
sion four is completely analogous to the relation of the conformal Laplacian to the
Laplacian in dimension two. On (Mn, g) when n 	= 4, define

P = (−∆)2 + δ(anR+ bn Ric)d+
n− 4

2
Q

where
Q = cn|Ric |2 + dnR

2 − 1
2(n− 1)

∆R

and

an =
(n− 2)2 + 4

2(n− 1)(n− 2)
, bn = − 4

n− 2
, cn = − 2

(n− 2)2
, dn =

n3 − 4n2 + 16n− 16
8(n− 1)2(n− 2)2

are dimensional constants. Then (Branson [Br]), writing gu = u
4

n−4 g, n 	= 4 we have

(11) (P )u(ϕ) = u−
n+4
n−4P (uϕ)

for all ϕ ∈ C∞(Mn). We also have the analogue for the Yamabe equation:

(12) Pu =
n− 4

2
Qu

n+4
n−4 on Mn, n 	= 4.

Such semilinear biharmonic equations with critical exponents were first investigated
by Pucci-Serrin in [PuS], they obtained the analogue of the Brezis-Nirenberg result
([BN]) in dimensions n = 5, 6, 7 for domains in Rn. In the article [DHL] there are
some criteria for existence for equations of Paneitz type.

It is interesting to note that in dimension three, the equation takes a special form

(13) Pu = −1
2
Qu−7

for the conformal factor g = u−4g0. It is natural to ask whether one can solve
the analogue of the Yamabe equation for this operator. In [XY] we were able to
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formulate a criteria for positivity of the operator P in dimension three and obtained
some existence result for the equation of prescribing constant Q. The study of this
equation is still in a primitive stage, there is much that remains to be developed.

In dimension four, the theory of the fourth order equation can be applied to the
study of fully nonlinear equations involving the symmetric functions of the modified
Ricci tensor. This set of equations is studied by Viaclovsky [V] in his thesis. In
dimension four, we can use the fourth order equation as a regularization of the second
order equation of prescribing the second elementary symmetric functions σ2(A) where
A is the conformal Ricci tensor A = Rc − 1

6Rg. As a consequence, we were able to
give a simple criteria for existence, in a given four dimensional conformal class, of a
metric with strongly positive Ricci tensor. The conformal classes in four dimension
that satisfy the conformally invariant conditions

∫
σ2(A)dV > 0 and having positive

Yamabe invariant, include the 4-sphere, connected sums of up to three copies of CP2,
connected sums of CP2 with up to eight copies of CP2 with reversed orientation, and
connected sums of up to two copies of S2 × S2.

We give an outline of the rest of the paper. In section two we study the fourth order
equation on 3-manifolds. We discuss the uniqueness question for the equation (12) in
Euclidean 3-space. We formulate a criteria for existence result for prescribing constant
Q for a class of 3-manifolds. In section three, we consider the fourth order equation on
conformally flat 4-manifolds and report on the compactification criteria of [CQY2].
Finally in section four we discuss the fully nonlinear equations for prescribing the
elementary symmetric functions of the conformal Ricci tensor on a 4-manifold.

It is a pleasant duty to acknowledge the help and support of our coworkers and col-
leagues, particularly Matt Gursky, Jie Qing, Peter Sarnak and Xingwang Xu. The last
named author would also like to thank the Department of Mathematics of Princeton
University for support and hospitality.

2. The fourth order operator in dimension three

For the P operator in dimension three we have

(14) P = (−∆)2 + δ(
5
4
Rg − 4Rc)d− 1

2
Q

where

(15) Q = −2|Rc|2 +
23
32
R2 − 1

4
∆R.

The Q curvature equation is given by

(16) Pu = −1
2
Qu−7.

The analogue of the Yamabe problem in this setting would be to solve equation (16)
with Q given by a constant. This is naturally the Euler equation of the variational

SÉMINAIRES & CONGRÈS 4
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functional

(17) F [u] =
(∫

M

u−6dV
)1/3 ∫

M

Pu · udV.

The direct method would be to minimize the functional over the class of positive
functions in the Sobolev space W 2,2. The negative exponent in the integral means
that the analytic difficulty is associated with the conformal factor touching zero. The
negative sign of the coefficient for the Q curvature term in equation (16) makes a
sharp contrast with the Yamabe equation. For example, among the eight standard
geometries, only in the case of the sphere and hyperbolic 3-manifolds the Q curvature
is positive. There is some preliminary result in this direction.

In studying a nonlinear equation involving a critical exponent, it will be important
to have an understanding of the blowup solutions. Thus one is interested in global
positive solutions in Euclidean 3-space of the equation

(18) ∆2u = −15
16
u−7.

Assuming the solution actually came from a positive solution of the corresponding
equation on S3 via the stereographic projection, it would have the natural asymptotic
behavior: u(x)/|x| tends to a positive constant as |x| tends to infinity. Adapting the
method of moving planes, Choi and Xu ([CX]) has classified such entire solutions:
after translations and dilations u is of the form u(x) = 2−1/2(1+ |x|2)1/2. In the same
article, they also showed that the same assertion holds if, instead of the asymptotic
condition at infinity, the scalar curvature of the metric is assumed to be non-negative
at infinity.

The question of existence turns out to be simplest when the operator P is positive
and the manifold (M3, g0) is in the positive Yamabe class. We have

Theorem 2.1([XY]). — If (M3, g0) has positive scalar curvature and the operator P
is positive, then the functional F achieves a positive minimum at a positive smooth
function u.

Remark 2.1
1. The positivity of the operator P does not follow from the positivity of the scalar

curvature. In fact on the standard 3-sphere the operator P has a negative eigenvalue
due to the fact Q0 = 15/8. A simple criteria for positivity of the operator P on
(M3, g) is that there is a conformal metric in which Q < 0 and R > 0. The class
of conformal structures satisfying the these conditions includes the standard product
structures on S1×S2 and their connected sums. In view of Yau’s conjecture [SY], it
is quite likely that the only possible topology supporting conformal structures with
these positivity conditions are those listed.

2. In a recent article, Djadli-Hebey-Ledoux [DHL] studied the best constants in a
Sobolev inequality related to the Paneitz equation in dimensions n ≥ 5.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000


