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SOME LOCAL AND NON-LOCAL VARIATIONAL
PROBLEMS IN RIEMANNIAN GEOMETRY

by

Matthew J. Gursky

Abstract — In this article we will give a brief summary of some recent work on
two variational problems in Riemannian geometry. Although both involve the study
of elementary symmetric functions of the eigenvalues of the Ricci tensor, as far as
technique and motivation are concerned the problems are actually quite different.

Résun€ (Problemes variationnels locaux et non-locaux en géométrie riemannienne)

Dans cet article nous donnons un apergu d’un travail récent sur deux problemes
variationnels en géométrie riemannienne. Bien que les deux problémes soient basés
sur I’étude des fonctions symétriques élémentaires des valeurs propres du tenseur de
Ricci, les techniques et les motivations sont en réalité différentes.

For since the fabric of the universe is most perfect and the work of a most
wise Creator, nothing at all takes place in the universe in which some rule
of mazimum or minimum does not appear. —Leonhard Euler

1. Quadratic Riemannian functionals

The first problem we will discuss represents joint work of the author with Jeff
Viaclovsky ([GV00]). To describe it, let us begin with some general notions.

Let M be a smooth manifold, M the space of smooth Riemannian metrics on
M, and G the diffeomorphism group of M. A functional FF : M — R is called
Riemannian if F is invariant under the action of G; i.e., if F(¢*g) = F(g) for each
¢ € G and g € M. If we endow M with a natural L?-Sobolev norm, then we may
speak of differentiable Riemannian functionals. Letting S2(M) denote the bundle of
symmetric two—tensors, we then say that F' : M — R has a gradient at g € M if

%F[g +th]li=0 = [ g(h, VF)dvol, for some VF € I'(S2(M)) and all h € I'(S2(M)).

2000 Mathematics Subject Classification— 53Cxx, 58Jxx.
Key words and phrases— Total scalar curvature, Einstein manifolds, calculus of variations.

Supported in part by NSFgrant DMS-9801046 and an Alfred P. Sloan Research Fellowship.

(© Séminaires et Congres 4, SMF 2000



168 M.J. GURSKY

An important example of a Riemannian functional is of course the total scalar
curvature

(1.1) Slg]l = /Rgdvolg

where R, denotes the scalar curvature of g. For Riemannian geometers, the import-
ance of (1.1) lies in the fact that when M is compact, critical points of S|, , where

My ={g € M| Vol(g) =1},

are Einstein (see [Bes87]). In the Lorentzian setting, Hilbert showed that the equa-
tions of general relativity can be realized in a similar manner ([Hil72]).

Our interest here is in functionals that are obtained by integrating a polynomial
which is quadratic in the curvature. By Weyl’s invariant theory ([Wey39]), a basis
for these functionals is

Rlg] =/|Riemg|2dvolg, olg] :/|Ricg|2dvolg,

TM:/@M%,

where Riem, and Ric, denote respectively the Riemann curvature tensor and Ricci
curvature tensor of g. Such functionals arise in certain field theories in physics; in
particular R can be viewed as a Riemannian analogue of Yang-Mills (see [Bac21],
[Bou96], [Bes87]).

From the variational point of view, the functionals in (1.2) have the apparent

(1.2)

advantage of being bounded below, and thus more amenable to the direct method.
However, the associated Euler equations are quite complicated (see [And97], [Bes87],
[Lam98]). Indeed, in [Lam98] a critical point of R is constructed on S3 which does
not have constant sectional curvature. Thus, even if successful, it is not clear that such
an approach would yield Einstein metrics (under certain geometric and topological
constraints there are some exceptions; see [Gur98]).

Before we give an exact description of the functional we will be interested in, for
the purpose of motivation it may be helpful to first recall a basic fact about the
decomposition of the curvature tensor (see [Bes87]). Let ® denote the Kulkarni-

R

Nomizu product, and define the tensor Cy = Ric —5m-n Y- Then the full curvature

tensor of g can be decomposed as

. 1
Rlem—W-l—mC@g,

where W denotes the Weyl curvature tensor of g. In three dimensions, we have
C, = Ric—lffg7 and the Weyl tensor vanishes. Thus, the full curvature tensor is
actually determined by C|,.

Now if o) : R®> — R denote the elementary symmetric functions, then the scalar
curvature can be expressed as R = 401(C). It follows that the natural quadratic
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counterpart to (1.1) is the functional:

(13) .7:2[9] = / (o) (Cg) dVOlg.
M
A simple calculation gives
1
(1.4) Falgl =/ (——|Ric|2 + i1%2) dvoly .
M 2 16

F3 is therefore quadratic in the curvature of g, and is a non—convex linear combination
of the functionals in (1.2).

There are interesting parallels between the functionals S and F5. Like the total
scalar curvature, F5 is neither bounded above nor below on M;. Further, one can
consider a constrained version of Fy by restricting to a fixed conformal class; see
[Viaal, [Viab]. In these works, the Euler equation for 73|y, , where

[g]l = {g = 62wgaw € COO(Mv R)| VOl(g) = 1};

is shown to be og(Ric—iRg) = A = constant. Remarkably, this scalar equation
encodes information about the sectional curvatures of g, provided A > 0:

Proposition 1.1 — Let M be three-dimensional. If o2(Ric —$Rg), > 0 then the sec-
tional curvatures of g at x are either all positive or all negative. In particular, critical
points of Fa|jg), with Falg] > 0 have either strictly positive or strictly negative sec-
tional curvature.

Moreover, we have the following new characterization of (compact) Einstein three-
manifolds:

Theorem 1.1([GVO0Q]). — Let M be compact and three—dimensional. Then a metric g
with Falg] > 0 is critical for Fo|m, if and only if g has constant sectional curvature.

Remark

1. The condition F3[g] > 0 in Theorem 1.1 is necessary: if F = Ric —%Rg denotes
the trace—free Ricci tensor, then
(1.5) 03(C) = (Ric—le) — Leps Ll
4 2 48
Thus, if g has constant curvature, oo = 4—18R2 > 0.

2. The condition F[g] > 0 may be thought of as an ellipticity assumption. To
our knowledge, this is the first example of a quadratic Riemannian functional
in three dimensions whose elliptic critical points are necessarily of constant
curvature.

3. The case Fa[g] = 0 is the case of degenerate ellipticity, and the proof in this
case is much more delicate, as the curvature may change sign.
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4. When Fs[g] < 0, we have left the region of ellipticity, and we do not expect a
simple classification of these critical points. Indeed, the construction of [Lam98]
provides an example of a critical metric on S? with F»[g] < 0.

In [GV00] we also considered a constrained version of the problem: F»|z, where

== {g € Ml’ a2(Cy) z/ 02(Cy) dvoly >0, and R, < O}.
M

In analogy with the work of Koiso for the scalar curvature (see [Koi79]), one can
show that = is in fact a submanifold of M;. Restricting to = introduces a Lagrange
multiplier term into the Euler equation, and like the corresponding problem for the
scalar curvature we can show that this term vanishes:

Theorem 1.2A[GVO0Q]). — Let M be compact and three—dimensional. If g is a critical
point of Fa|=, then g is hyperbolic.

The proof of Theorem 1.1 naturally divides into two cases: first, assuming the
critical metric g has 02(C) > 0, then the more difficult case of 02(C) = 0. The
former case further divides into two parts, according to whether the scalar curvature
is strictly positive or strictly negative.

The Euler equation for F; is quite complicated; see [GV00] for a detailed account
of the first variation. The precise formula is:

1

1 1
(VF2)ij = ;AE;; + w—ARgij — cViV,R
(1 6) 2 24 8
’ 5 1 3
_ 2EimEmj — ﬂRE” =+ %RQQU’ — 50’2(0)\9@‘.

For the proof of the case when g2(C) > 0 and R > 0 it will be helpful to introduce
the tensor T' = — Ric —|—%Rg. The significance of T is the following: suppose II is a
non-degenerate tangent plane in T, M for some p € M. If uw € T, M is a unit normal
to II, then the sectional curvature of II is T'(u,w). In particular, if o2(C) > 0 and
R > 0 then by Proposition 1.1 the tensor T is positive definite. In fact, the same
argument shows that when R > 0 but 02(C) > 0, then T is positive semi-definite.

Now suppose that g is critical for Fa2|aq,. Taking the inner product with E on both
sides of (1.6) we get

1, .- 1
(1.7) ZT”viij = Aoy(C) + |VE]* — ﬂ|VR|2
5)
+4tr B3 + ER|E|2 +29(VFs, E),
where tr E3 = EfEJ’“E}€ Since g is critical, VF2 = 0 and Aoy(C) =0, so

1. 1 5
(1.8) ZT”viij = |VE]? - ﬂ|VR|2 +4tr B 4 ER|E|2.
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To show that £ = 0 when 02(C) > 0 and R > 0 we use the maximum principle,
which requires the following lemma:

Lemma 1.1 — Suppose g is critical for Fa|pm, and o2(C) > 0. Let U C M be an
open set on which R > 0. Then in U,

1 .. 1
1.9 ~TYV,;V,R > —=|E|*.
(1.9 {TOVVR 2 B
Proof. — Since 02(C') is a non-negative constant, it is easy to see that
1
(1.10) |VE]* > ﬂ|VR|2.

If we substitute this into (1.8) we obtain

1, . 5
(1.11) 1TViViR > 4tr B3 + ER|E|2.
Using the sharp inequality

1
(1.12) tr B% > ——6|E|3,

V6

we conclude

1. 4
1.1 TV, V:R > ——
(1.13) 1 V:V;R > NG

Since 02(C) > 0, we have R > 2v/6|E|, thus

5
|E]* + ER|E|2.

1 .. 4 5 1
(1.14) ~T%V,;V,;R > ——6|E|3 + E2\/6|E|3 = —|E]3.

i V6 V6
O

Now if 02(C) > 0 and R > 0 on M, then we can apply Lemma 1.1 on U = M. Since
T > 0, we conclude by the maximum principle that £ =0 on M.

The case where 02(C) > 0 and R < 0 requires a different idea. The argument
in ([GV00]) is very much inspired by the work of Koiso ([K0i78]) and Bourguignon
([Bou81]). Here we will offer a different (but equivalent) argument which seems more
natural, in part because it sheds some light on the rather roccoco expression for the
gradient in (1.6).

Note that the tensor C, being a section of S3(M), can alternatively be viewed as
a one-form with values in the cotangent bundle T*M. We will write this as C €
QYT*M). Now consider the complex

(1.15) QUT*M) — QYT*M) — Q*(T*M) — - -

The Riemannian connection V : Q°(T*M) — QY(T* M), and induces the exterior de-
rivative dV : QY (T*M) — Q?(T*M). We also have the adjoint maps §V : Q2(T*M) —
QYT*M) and V* : QY(T*M) — Q°(T*M). Note that V* is just the usual divergence
operator on symmetric two-tensors. Moreover, a manifold is locally conformally flat
if and only if the tensor C satisfies dVC = 0.
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