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SOME LOCAL AND NON-LOCAL VARIATIONAL
PROBLEMS IN RIEMANNIAN GEOMETRY

by

Matthew J. Gursky

Abstract. — In this article we will give a brief summary of some recent work on
two variational problems in Riemannian geometry. Although both involve the study
of elementary symmetric functions of the eigenvalues of the Ricci tensor, as far as
technique and motivation are concerned the problems are actually quite different.

Résumé (Problèmes variationnels locaux et non-locaux en géométrie riemannienne)
Dans cet article nous donnons un aperçu d’un travail récent sur deux problèmes

variationnels en géométrie riemannienne. Bien que les deux problèmes soient basés
sur l’étude des fonctions symétriques élémentaires des valeurs propres du tenseur de
Ricci, les techniques et les motivations sont en réalité différentes.

For since the fabric of the universe is most perfect and the work of a most
wise Creator, nothing at all takes place in the universe in which some rule
of maximum or minimum does not appear. –Leonhard Euler

1. Quadratic Riemannian functionals

The first problem we will discuss represents joint work of the author with Jeff
Viaclovsky ([GV00]). To describe it, let us begin with some general notions.
Let M be a smooth manifold, M the space of smooth Riemannian metrics on

M , and G the diffeomorphism group of M . A functional F : M → R is called
Riemannian if F is invariant under the action of G; i.e., if F (φ∗g) = F (g) for each
φ ∈ G and g ∈ M. If we endow M with a natural L2–Sobolev norm, then we may
speak of differentiable Riemannian functionals. Letting S2(M) denote the bundle of
symmetric two–tensors, we then say that F : M → R has a gradient at g ∈ M if
d

dt
F [g + th]|t=0 =

∫
g(h,∇F ) d volg for some ∇F ∈ Γ(S2(M)) and all h ∈ Γ(S2(M)).
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An important example of a Riemannian functional is of course the total scalar
curvature

(1.1) S[g] =
∫

Rg d volg

where Rg denotes the scalar curvature of g. For Riemannian geometers, the import-
ance of (1.1) lies in the fact that when M is compact, critical points of S|M1 , where

M1 = {g ∈ M| Vol(g) = 1},

are Einstein (see [Bes87]). In the Lorentzian setting, Hilbert showed that the equa-
tions of general relativity can be realized in a similar manner ([Hil72]).
Our interest here is in functionals that are obtained by integrating a polynomial

which is quadratic in the curvature. By Weyl’s invariant theory ([Wey39]), a basis
for these functionals is

R[g] =
∫

|Riemg |2 d volg, ρ[g] =
∫

|Ricg |2 d volg,

τ [g] =
∫

R2
g d volg,

(1.2)

where Riemg and Ricg denote respectively the Riemann curvature tensor and Ricci
curvature tensor of g. Such functionals arise in certain field theories in physics; in
particular R can be viewed as a Riemannian analogue of Yang–Mills (see [Bac21],
[Bou96], [Bes87]).
From the variational point of view, the functionals in (1.2) have the apparent

advantage of being bounded below, and thus more amenable to the direct method.
However, the associated Euler equations are quite complicated (see [And97], [Bes87],
[Lam98]). Indeed, in [Lam98] a critical point of R is constructed on S3 which does
not have constant sectional curvature. Thus, even if successful, it is not clear that such
an approach would yield Einstein metrics (under certain geometric and topological
constraints there are some exceptions; see [Gur98]).
Before we give an exact description of the functional we will be interested in, for

the purpose of motivation it may be helpful to first recall a basic fact about the
decomposition of the curvature tensor (see [Bes87]). Let 
 denote the Kulkarni-
Nomizu product, and define the tensor Cg = Ric− R

2(n−1)g. Then the full curvature
tensor of g can be decomposed as

Riem =W +
1

(n− 2)C 
 g,

where W denotes the Weyl curvature tensor of g. In three dimensions, we have
Cg = Ric−R

4 g, and the Weyl tensor vanishes. Thus, the full curvature tensor is
actually determined by Cg.
Now if σk : R

3 → R denote the elementary symmetric functions, then the scalar
curvature can be expressed as R = 4σ1(C). It follows that the natural quadratic
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counterpart to (1.1) is the functional:

(1.3) F2[g] =
∫

M

σ2 (Cg) d volg .

A simple calculation gives

(1.4) F2[g] =
∫

M

(
−1
2
|Ric |2 + 3

16
R2

)
d volg .

F2 is therefore quadratic in the curvature of g, and is a non–convex linear combination
of the functionals in (1.2).
There are interesting parallels between the functionals S and F2. Like the total

scalar curvature, F2 is neither bounded above nor below on M1. Further, one can
consider a constrained version of F2 by restricting to a fixed conformal class; see
[Viaa], [Viab]. In these works, the Euler equation for F2|[g]1 , where

[g]1 = {g̃ = e2wg, w ∈ C∞(M,R)| Vol(g̃) = 1},

is shown to be σ2(Ric− 1
4Rg) ≡ λ = constant. Remarkably, this scalar equation

encodes information about the sectional curvatures of g, provided λ > 0:

Proposition 1.1. — Let M be three-dimensional. If σ2(Ric− 1
4Rg)x > 0 then the sec-

tional curvatures of g at x are either all positive or all negative. In particular, critical
points of F2|[g]1 with F2[g] > 0 have either strictly positive or strictly negative sec-
tional curvature.

Moreover, we have the following new characterization of (compact) Einstein three-
manifolds:

Theorem 1.1([GV00]). — Let M be compact and three–dimensional. Then a metric g

with F2[g] ≥ 0 is critical for F2|M1 if and only if g has constant sectional curvature.

Remark

1. The condition F2[g] ≥ 0 in Theorem 1.1 is necessary: if E = Ric− 1
3Rg denotes

the trace–free Ricci tensor, then

σ2(C) = σ2

(
Ric−1

4
Rg

)
= −1

2
|E|2 + 1

48
R2.(1.5)

Thus, if g has constant curvature, σ2 = 1
48R

2 ≥ 0.
2. The condition F2[g] > 0 may be thought of as an ellipticity assumption. To
our knowledge, this is the first example of a quadratic Riemannian functional
in three dimensions whose elliptic critical points are necessarily of constant
curvature.

3. The case F2[g] = 0 is the case of degenerate ellipticity, and the proof in this
case is much more delicate, as the curvature may change sign.
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4. When F2[g] < 0, we have left the region of ellipticity, and we do not expect a
simple classification of these critical points. Indeed, the construction of [Lam98]
provides an example of a critical metric on S3 with F2[g] < 0.

In [GV00] we also considered a constrained version of the problem: F2|Ξ , where

Ξ =
{
g ∈ M1

∣∣∣ σ2(Cg) =
∫

M

σ2(Cg) d volg > 0, and Rg < 0
}
.

In analogy with the work of Koiso for the scalar curvature (see [Koi79]), one can
show that Ξ is in fact a submanifold of M1. Restricting to Ξ introduces a Lagrange
multiplier term into the Euler equation, and like the corresponding problem for the
scalar curvature we can show that this term vanishes:

Theorem 1.2([GV00]). — Let M be compact and three–dimensional. If g is a critical
point of F2|Ξ , then g is hyperbolic.

The proof of Theorem 1.1 naturally divides into two cases: first, assuming the
critical metric g has σ2(C) > 0, then the more difficult case of σ2(C) = 0. The
former case further divides into two parts, according to whether the scalar curvature
is strictly positive or strictly negative.
The Euler equation for F2 is quite complicated; see [GV00] for a detailed account

of the first variation. The precise formula is:

(∇F2)ij =
1
2
∆Eij +

1
24
∆Rgij −

1
8
∇i∇jR

− 2EimEmj −
5
24

REij +
1
36

R2gij −
3
2
σ2(C)gij .

(1.6)

For the proof of the case when σ2(C) > 0 and R > 0 it will be helpful to introduce
the tensor T = −Ric+ 1

2Rg. The significance of T is the following: suppose Π is a
non-degenerate tangent plane in TpM for some p ∈ M . If u ∈ TpM is a unit normal
to Π, then the sectional curvature of Π is T (u, u). In particular, if σ2(C) > 0 and
R > 0 then by Proposition 1.1 the tensor T is positive definite. In fact, the same
argument shows that when R > 0 but σ2(C) ≥ 0, then T is positive semi-definite.
Now suppose that g is critical for F2|M1 . Taking the inner product with E on both

sides of (1.6) we get

(1.7)
1
4
T ij∇i∇jR = ∆σ2(C) + |∇E|2 − 1

24
|∇R|2

+ 4 trE3 +
5
12

R|E|2 + 2g(∇F2, E),

where trE3 = Ej
i E

k
j E

i
k. Since g is critical, ∇F2 = 0 and ∆σ2(C) = 0, so

1
4
T ij∇i∇jR = |∇E|2 − 1

24
|∇R|2 + 4 trE3 +

5
12

R|E|2.(1.8)
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To show that E = 0 when σ2(C) > 0 and R > 0 we use the maximum principle,
which requires the following lemma:

Lemma 1.1. — Suppose g is critical for F2|M1 and σ2(C) ≥ 0. Let U ⊂ M be an
open set on which R > 0. Then in U ,

1
4
T ij∇i∇jR ≥ 1√

6
|E|3.(1.9)

Proof. — Since σ2(C) is a non-negative constant, it is easy to see that

|∇E|2 ≥ 1
24

|∇R|2.(1.10)

If we substitute this into (1.8) we obtain
1
4
T ij∇i∇jR ≥ 4 trE3 +

5
12

R|E|2.(1.11)

Using the sharp inequality

trE3 ≥ − 1√
6
|E|3,(1.12)

we conclude
1
4
T ij∇i∇jR ≥ − 4√

6
|E|3 + 5

12
R|E|2.(1.13)

Since σ2(C) ≥ 0, we have R ≥ 2
√
6|E|, thus

1
4
T ij∇i∇jR ≥ − 4√

6
|E|3 + 5

12
2
√
6|E|3 = 1√

6
|E|3.(1.14)

Now if σ2(C) > 0 and R > 0 on M , then we can apply Lemma 1.1 on U =M . Since
T > 0, we conclude by the maximum principle that E ≡ 0 on M .
The case where σ2(C) > 0 and R < 0 requires a different idea. The argument

in ([GV00]) is very much inspired by the work of Koiso ([Koi78]) and Bourguignon
([Bou81]). Here we will offer a different (but equivalent) argument which seems more
natural, in part because it sheds some light on the rather roccoco expression for the
gradient in (1.6).
Note that the tensor C, being a section of S2(M), can alternatively be viewed as

a one-form with values in the cotangent bundle T ∗M . We will write this as C ∈
Ω1(T ∗M). Now consider the complex

Ω0(T ∗M)→ Ω1(T ∗M)→ Ω2(T ∗M)→ · · ·(1.15)

The Riemannian connection ∇ : Ω0(T ∗M)→ Ω1(T ∗M), and induces the exterior de-
rivative d∇ : Ω1(T ∗M)→ Ω2(T ∗M). We also have the adjoint maps δ∇ : Ω2(T ∗M)→
Ω1(T ∗M) and ∇∗ : Ω1(T ∗M)→ Ω0(T ∗M). Note that ∇∗ is just the usual divergence
operator on symmetric two-tensors. Moreover, a manifold is locally conformally flat
if and only if the tensor C satisfies d∇C ≡ 0.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2000


