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DEPENDENCE OF THE DIRAC SPECTRUM
ON THE SPIN STRUCTURE

by

Christian Bär

Abstract. — The theme is the influence of the spin structure on the Dirac spectrum
of a spin manifold. We survey examples and results related to this question.

Résumé (Dépendance du spectre de l’op´erateur de Dirac par rapport à la structure spinori-
elle)

Sur une variété spinorielle, nous étudions la dépendance du spectre de l’opérateur
de Dirac par rapport à la structure spinorielle. Nous donnons ensuite un résumé des
exemples et des résultats liés à cette question.

1. Introduction

The relation between the geometry of a Riemannian manifold and the spectrum
of its Laplace operator acting on functions (or more generally, on differential forms),
has attracted a lot of attention. This is the question how shape and sound of a space
are related. A beautiful introduction into this topic can be found in [12]. When one
passes from this “bosonic” theory to “fermions”, i.e. when turning to spinors and the
Dirac operator, a new object enters the stage, the spin structure. This is a global
topological object needed to define spinors. The question arises how this piece of
structure, in addition to the usual geometry of the manifold, influences the spectrum
of the Dirac operator.

It has been known for a long time that even on the simplest examples such as the
1-sphere the Dirac spectrum does depend on the spin structure. We will discuss the
1-sphere, flat tori, 3-dimensional Bieberbach manifolds, and spherical space forms in
some detail. For these manifolds the spectrum can be computed explicitly. For some of
these examples an important invariant computed out of the spectrum, the η-invariant,
also depends on the spin structure. On the other hand, under a certain assumption,
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the difference between the η-invariants for two spin structures on the same manifold
must be an integer. Hence the two η-invariants are not totally unrelated.

We also look at circle bundles and the behavior of the Dirac spectrum under col-
lapse. This means that one shrinks the fibers to points. The spin structure determines
the qualitative spectral behavior. If the spin structure is projectable, then some ei-
genvalues tend to ±∞ while the others essentially converge to the eigenvalues of the
basis manifold. If the spin structure if nonprojectable, then all eigenvalues diverge.

In most examples it is totally hopeless to try to explicitly compute the Dirac
(or other) spectra. Still, eigenvalue estimates are very often possible. So far, these
estimates have not taken into account the spin structure despite its influence on the
spectrum. The reason for this lies in the essentially local methods such as the Bochner
technique. In order to get better estimates taking the spin structure into account one
first has to find new, truly spin geometric invariants. We discuss some of the first
steps in this direction. Here the spinning systole is the relevant spin geometric input.

Finally we look at noncompact examples in order to check if the continuous spec-
trum is affected by a change of spin structure. It turns out that this is the case.
There are hyperbolic manifolds having two spin structures such that for the first one
the Dirac spectrum is discrete while it is all of R for the other one. The influence of
the spin structure could hardly be any more dramatic.

Acknowledgements. It is a pleasure to thank B. Ammann, M. Dahl, and F. Pfäffle
for helpful discussion.

2. Generalities

Let us start by collecting some terminology and basic facts. A more thorough
introduction to the concepts of spin geometry can e.g. be found in [15, 9, 18]. Let
M denote an n-dimensional oriented Riemannian manifold with a spin structure P .
This is a Spin(n)-principal bundle which doubly covers the bundle of oriented tangent
frames PSOM of M such that the canonical diagram

P × Spin(n)

��

// P

�� ""
EE

EE
EE

EE
E

PSOM × SO(n) // PSOM // M

commutes. Such a spin structure need not exist, e.g. complex projective plane CP2

has none. If M has a spin structure we call M a spin manifold. The spin structure of
a spin manifold is in general not unique. More precisely, the cohomology H1(M ;Z2)
of a spin manifold acts simply transitively on the set of all spin structures.

Given a spin structure P one can use the spinor representation

Spin(n) → Aut(Σn)
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DEPENDENCE OF THE DIRAC SPECTRUM ON THE SPIN STRUCTURE 19

to construct the associated spinor bundle ΣM overM . Here Σn is a Hermitian vector
space of dimension 2[n/2] on which Spin(n) acts by unitary transformations. Hence
ΣM is a Hermitian vector bundle of rank 2[n/2]. Sections in ΣM are called spinor
fields or simply spinors. Note that unlike differential forms the definition of spinors
requires the choice of a spin structure. The Levi-Civita connection on PSOM can be
lifted to P and therefore induces a covariant derivative ∇ on ΣM .

Algebraic properties of the spinor representation ensure existence of Clifford mul-
tiplication

TpM ⊗ ΣpM → ΣpM, X ⊗ ψ �→ X · ψ,

satisfying the relations

X · Y · ψ + Y ·X · ψ + 2 〈X,Y 〉ψ = 0

for all X,Y ∈ TpM , ψ ∈ ΣpM , p ∈ M . Here 〈·, ·〉 denotes the Riemannian metric.
The Dirac operator acting on spinors is defined as the composition of ∇ with

Clifford multiplication. Equivalently, if e1, . . . , en is an orthonormal basis of TpM ,
then

(Dψ)(p) =
n∑

i=1

ei · ∇eiψ.

The Dirac operator is a formally self-adjoint elliptic differential operator of first order.
If the underlying Riemannian manifold M is complete, then D, defined on compactly
supported smooth spinors, is essentially self-adjoint in the Hilbert space of square-
integrable spinors. General elliptic theory ensures that the spectrum of D is discrete
if M is compact and satisfies Weyl’s asymptotic law

lim
λ→∞

N(λ)
λn

=
2[n/2] · vol(M)

(4π)
n
2 · Γ

(
n
2 + 1

) ,
where N(λ) is the number of eigenvalues whose modulus is ≤ λ. This implies that
the series

η(s) =
∑
λ�=0

sign(λ)|λ|−s

converges for s ∈ C if the real part of s is sufficiently large. Here summation is
taken over all nonzero eigenvalues λ of D, each eigenvalue being repeated according
to its multiplicity. It can be shown that the function η(s) extends to a meromorphic
function on the whole complex plane and has no pole at s = 0. Evaluation of this
meromorphic extension at s = 0 gives the η-invariant,

η := η(0).

If M is complete but noncompact, then D may also have eigenvalues of infinite mul-
tiplicity, cumulation points of eigenvalues, and continuous spectrum.
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3. The baby example

In order to demonstrate the dependence of the Dirac spectrum on the choice of
spin structure the circle S1 = R/2πZ can serve as a simple but nonetheless illustrative
example. Since the frame bundle PSOS1 is trivial we can immediately write down the
trivial spin structure P = S1 × Spin(1). Note that Spin(1) = Z2 and Σ1 = C. The
associated spinor bundle is then also trivial and 1-dimensional. Hence spinors are
simply C-valued functions on S1. The Dirac operator is nothing but

D = i
d

dt
.

Elementary Fourier analysis shows that the spectrum consists of the eigenvalues

λk = k

with corresponding eigenfunctions t �→ e−ikt, k ∈ Z. Since the spectrum is symmetric
about zero, the η-series, and in particular, the η-invariant vanishes,

η = 0.

FromH1(S1;Z2) = Z2 we see that S1 has a second spin structure. It can be described
as P̃ = ([0, 2π]× Spin(1))/ ∼ where ∼ identifies 0 with 2π while it interchanges the
two elements of Spin(1). Let us call this spin structure the nontrivial spin structure of
S1. Spinors with respect to this spin structure no longer correspond to functions on
S1, i.e. to 2π-periodic functions on R, but rather to 2π-anti-periodic complex-valued
functions on R,

ψ(t+ 2π) = −ψ(t).

This time the eigenvalues are

λk = k +
1
2
,

k ∈ Z, with eigenfunctions t �→ e−i(k+ 1
2 )t. Again, the spectrum is symmetric about

0, hence η = 0. Vanishing of the η-invariant is in fact not surprising. One can show
that always η = 0 for an n-dimensional manifold unless n ≡ 3 mod 4.

The example S1 has shown that the eigenvalues of the Dirac operator definitely do
depend on the choice of spin structure. Even the dimension of the kernel of the Dirac
operator is affected by a change of spin structure. For the trivial spin structure of S1

it is 1 while it is zero for the nontrivial spin structure.
We conclude this section with a remark on extendability of spin structures because

this sometimes causes confusion. If M is a Riemannian spin manifold with boundary
∂M , then a spin structure on M induces one on ∂M . To see this consider the frame
bundle PSO∂M of the boundary as a subbundle of PSOM restricted to the boundary
by completing a frame for ∂M with the exterior unit normal vector to a frame for M .
Now the inverse image of PSO∂M under the covering map P → PSOM defines a spin
structure on ∂M .
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Look at the case that M is the disc with S1 as its boundary. Since the disk is
simply connected it can have only one spin structure. Hence only one of the two
spin structures of S1 extends to the disc. The tangent vector to the boundary S1

together with the unit normal vector forms a frame for the disk which makes one
full rotation when going around the boundary one time. It is therefore a loop in the
frame bundle of the disk whose lift to the spin structure does not close up. Thus the
induced spin structure on the boundary is the nontrivial spin structure of S1 while
the trivial spin structure does not bound. Hence from a cobordism theoretical point
of view the trivial spin structure is nontrivial and vice versa.

4. Flat tori and Bieberbach manifolds

The case of higher-dimensional flat tori is very similar to the 1-dimensional case.
There are 2n different spin structures on T n = R

n/Γ where Γ is a lattice in R
n.

Let b1, . . . , bn be a basis of Γ, let b∗1, . . . , b
∗
n be the dual basis for the dual lattice Γ∗.

Spin structures can then be classified by n-tuples (δ1, . . . , δn) where each δj ∈ {0, 1}
indicates whether or not the spin structure is twisted in direction bj . The spectrum
of the Dirac operator can then be computed:

Theorem 4.1(Friedrich [14]). — The eigenvalues of the Dirac operator on T n = Rn/Γ
with spin structure corresponding to (δ1, . . . , δn) are given by

±2π

∣∣∣∣∣∣b
∗ +

1
2

n∑
j=1

δjb
∗
j

∣∣∣∣∣∣
where b∗ runs through Γ∗ and each b∗ contributes multiplicity 2[n/2]−1.

Again the spectrum depends on the choice of spin structure. In particular, eigen-
value 0 occurs only for the trivial spin structure given by (δ1, . . . , δn) = (0, . . . , 0).
Since again the spectrum is symmetric about zero, the η-invariant vanishes, η = 0,
for all spin structures.

This changes if one passes from tori to more general compact connected flat man-
ifolds, also called Bieberbach manifolds. They can always be written as a quotient
M = G\T n of a torus by a finite group G. In three dimensions, n = 3, there are
5 classes of compact oriented Bieberbach manifolds besides the torus. Their Dirac
spectra have been calculated by Pfäffle [20] for all flat metrics. This time one finds
examples with asymmetric spectrum and the η-invariant depends on the choice of
spin structure.

Theorem 4.2(Pfäffle [20]). — The η-invariant of the 3-dimensional compact oriented
Bieberbach manifolds besides the torus are given by the following table:
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