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GENERALIZED GRADIENTS AND POISSON TRANSFORMS

by

Bent Ørsted

Abstract. — For G a semisimple Lie group and P a parabolic subgroup we construct a
large class of first-order differential operators which are G-equivariant between certain
vector bundles over G/P . These are intertwining operators from one generalized
principal series representation for G to another. We also study the relation with
Poisson transforms to the Riemannian symmetric space G/K.

Résumé(Gradients généralisés et les transformations de Poisson). — PourG un groupe de
Lie semi-simple et pour P un sous-groupe parabolique, nous construisons une grande
famille d’opérateurs différentiels G-équivariants du premier ordre entre certains fibrés
vectoriels sur G/P . Il s’agit d’opérateurs d’entrelacement des représentations de série
principale généralisée. Nous étudions également la relation avec l’espace symétrique
riemannien, G/K, en utilisant les transformations de Poisson.

1. Introduction

This paper is partly motivated by differential geometry, partly by representation
theory for semi-simple Lie groups. We give a generalization of the results by Fegan
[4], which dealt with the group SO(n, 1), to the case of an arbitrary semisimple
Lie group G and an arbitrary parabolic subgroup P . At the same time we give a
new proof of Fegan’s case, and place it in the framework of analysis on Lie groups.
Our method of constructing intertwining first-order differential operators between
generalized principal series representations for G has its origin in the generalized
gradients of Stein and Weiss [8], suitably generalized to the setting of flag manifolds.

We expect our construction of these gradients to have applications in other para-
bolic geometries, and also in the construction of small unitary representations of semi-
simple Lie groups. By duality our problem is related to finding embeddings between
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generalized Verma modules; this was studied for parabolic geometries in great gen-
erality by Cap, Slovák and Souček, see [2], and previously by Baston and Eastwood.
Closest to our approach is the recent work by Korányi and Reimann [6] who with a
different (and independent) method treat the case of a minimal parabolic subgroup.
Note also [10] where a related family of operators is constructed and applied to the
problem of finding composition series for real rank one groups.

Let us here briefly state in rough form our main result: Denote by C∞(E) the
smooth sections of a homogeneous vector bundle over the real flag manifold G/P ,
where G is a semi-simple Lie group, P a parabolic subgroup, and E induced by a
representation E of P , i.e.

E = G×P E.

We assume E irreducible, and denote by T
∗ the cotangent bundle over G/P with fiber

T ∗ at the base point. The goal is to find a first-order differential operator on smooth
sections

D : C∞(E) −→ C∞(F)

which is G-equivariant between two such bundles. This is done by first finding an
equivariant connection (actually in the first instance only equivariant w.r.t. the max-
imal compact subgroup K of G)

∇ : C∞(E) −→ C∞(E⊗ T
∗)

and second to decompose the tensor product E⊗T ∗ and project on a suitable quotient
F , invariant for the P -action:

proj: E ⊗ T ∗ −→ F.

Then our gradient is the composition D = proj ◦ ∇ and we have

Theorem 1.1. — In the setting above D is G-equivariant if and only if the Casimir
operator of G has the same value in C∞(E) and in C∞(F).

In the last section we show that these gradients can in some sense be extended to
the Riemannian symmetric space G/K in a canonical way, which is consistent with
natural vector-valued Poisson transforms from C∞(E) to sections of bundles over
G/K.

From a representation theory point of view the gradients D are useful in studying
the lattice of invariant subspaces in C∞(E), i.e. the composition series for generalized
principal series. Though we shall not go into discussing higher order equivariant
differential equations in this paper, it is clear that there will exist such by composing
our first-order operators. The Poisson transforms relate to both representation theory
and to geometric problems — we have at the end added one such example and also a
case of a symplectic analogue on S2 of the Dirac operator, equivariant for the double
cover of the projective group.
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2. Construction of gradients

Fix a semi-simple Lie group G with finite center, a maximal compact subgroup K,
a corresponding Cartan decomposition of the Lie algebra of G:

g = k⊕ s

and a maximal Abelian subspace a0 ⊆ s. We have a corresponding minimal parabolic
subgroup P0 = M0A0N0 constructed in the usual way, and we fix a parabolic subgroup
P ⊇ P0 with Langlands decomposition

P = MAN

and for the Lie algebras m, a, n of M , A, N we get

g = n̄⊕m⊕ a⊕ n.

Here n̄ = θn, θ the Cartan involution, and

n =
∑
α>0

nα

the decomposition into the positive root spaces and α > 0 means α ∈ ∆+ ⊆ ∆ for
a choice of positive roots of a in g. For this, see [5]. We shall also need the simple
roots S ⊆ ∆+ (note that we can still talk about simple roots, even though we may
not have a root system here). The flag manifold is the compact space

G/P = K/K ∩ P = K/K ∩M
and this is where we shall construct equivariant first-order differential operators. Fix
an irreducible finite-dimensional representation (σ,Eσ) of M in the Hilbert space Eσ

(we shall later relax this condition); for ν ∈ a∗
C
, the complex dual space to a, consider

the generalized principal series representation

πσ,ν = IndG
P (σ ⊗ eν ⊗ I)

induced from the P -representation

(σ ⊗ eν ⊗ I)(man) = σ(m)aν .

The smooth vectors are

C∞(Eσ,ν) ={
f : G→ Eσ | f ∈ C∞, f(gman) = σ(m)−1a−νf(g) for all g ∈ G, man ∈MAN

}
which we identify with the smooth sections of the homogeneous vector bundle

Eσ,ν = G×P Eσ,ν

where Eσ,ν = Eσ with the P -action considered above. We call ν the weight of the
representation/bundle.

As usual G acts by left translation:

(πσ,ν(g0)f)(g) = f(g−1
0 g) (g0, g ∈ G)
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and we may let this representation act in a Hilbert space by setting

‖f‖2 =
∫

K

‖f(k)‖2Eσ
dk

– but we shall not need to do so here. Recall that a first-order differential operator
is a homomorphism from the first jet bundle to the image bundle, see [7], so we are
looking for σ′ and ν′ with a

D : J1(Eσ,ν) −→ Eσ′,ν′

where the fiber at a point x ∈ G/P of the first jet bundle is

J1(Eσ,ν)x = C∞(Eσ,ν)/Z1
x(Eσ,ν)

where
Z1

x(Eσ,ν) = {f | f (α)(x) = 0, |α| ≤ 1}
is the space of sections vanishing to first order at the point.

Now the first jet bundle is also a homogeneous vector bundle, and at the base point
the fiber is (suppressing the σ and ν)

J1(E) ∼= E ⊕Hom(n̄, E)

and for a section f ∈ C∞(E) we have the natural map

j1 : f −→ (f, df)|eP ∈ J1(E)

specifying for a section its value and first derivative at the base point. Here we
identify the tangent space at the base point T ∗ ∼= n̄ and the cotangent space T ∗ ∼= n

via the duality induced by the Killing form 〈·, ·〉 on g. It is convenient to consider the
derivative of a section as the following covariant derivative

(∇Xf)(g) =
d

dt
f(g exp tX)|t=0 (f ∈ C∞(E), X ∈ n̄, g ∈ G)

which defines a connection

∇ : C∞(E) −→ C∞(E⊗ T
∗).

Our goal is to compose this with a projection from E ⊗ n onto some subspace F

invariant under the action of M — this is the generalized gradient construction of the
desired

D : C∞(E) −→ C∞(F)

with an appropriate choice of weights. So we are looking for a G-map

D : G×P J1(E) −→ G×P F

which means looking for a P -map

D : J1(E) −→ F.

The main problem is to construct D as an n-map, i.e. we have to study the action of
n on the module J1(E). This is done in the following

SÉMINAIRES & CONGRÈS 4
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Lemma 2.1. — Let v ∈ E and A ∈ Hom(n̄, E) correspond to the section f ∈ C∞(E)
via the map j1; then for all Y ∈ n the action is

Y · (v,A) = (0, [Y, ·]m⊕a · v + A([Y, ·]n̄))

where an element Z ∈ g is decomposed

Z = Zn̄ + Zm⊕a + Zn

according to the direct sum
g = n̄⊕m⊕ a⊕ n.

Proof. — Let X ∈ n̄, Y ∈ n, n = exp sY and f ∈ C∞(E), then the N -action on the
differential of f is

d

dt
f(n−1 exp tX)|t=0 =

d

dt
f(exp(Ad(n−1)tX))|t=0

and we also have by differentiation of this the action of Y as
d

dt

d

ds
exp(Ad(n−1)tX)|s=0|t=0 = −ad(Y )X = [X,Y ]n̄ + [X,Y ]m⊕a + [X,Y ]n.

Since f is a section, it transforms trivially from the right under n and according to
the action in E under m⊕ a. Hence we get the n-action

[Y,X ]m⊕a · f(e) + A([Y,X ]n̄)

as stated, since
A([Y,X ]n̄) = [Y,X ]n̄ · df(e).

Following Fegan we first consider the “m⊕ a” part in this action, namely the term

[Y,X ]m⊕a · v

which may be thought of as a map

β : n −→ Hom(E, n⊗ E)

hence an element

β ∈ Hom(n, E∗ ⊗ n⊗ E) ∼= Hom(n⊗ E, n⊗ E).

Now the image of β will be an n-submodule of n ⊗ E since β exactly encodes the
action of n. The “n̄” part is

A([X,Y ]n̄)

which can be made to vanish, namely by observing that if α is a simple root, then

∀Y ∈ n ∀X ∈ n̄α : [X,Y ]n̄ = 0.

Hence for α a simple root, the image of

β : nα ⊗ E −→ nα ⊗ E
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