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INVARIANT OPERATORS OF THE FIRST ORDER ON
MANIFOLDS WITH A GIVEN PARABOLIC STRUCTURE

by

Jan Slovák & Vladimı́r Souček

Abstract. — The goal of this paper is to describe explicitly all invariant first order
operators on manifolds equipped with parabolic geometries. Both the results and the
methods present an essential generalization of Fegan’s description of the first order
invariant operators on conformal Riemannian manifolds. On the way to the results,
we present a short survey on basic structures and properties of parabolic geometries,
together with links to further literature.

Résumé(Opérateurs invariants d’ordre 1 sur des variétés paraboliques). — Le but de l’ar-
ticle est de décrire explicitement tous les opérateurs différentiels invariants d’ordre
un sur les variétés munies d’une structure de géométrie parabolique (les espaces géné-
ralisés d’Élie Cartan). Les résultats, ainsi que les méthodes, généralisent un résultat
de Fegan sur la classification des opérateurs différentiels d’ordre un sur une variété
munie d’une structure conforme. Au passage, nous donnons un bref resumé des pro-
priétés fondamentales des espaces généralisés d’É. Cartan et du calcul différentiel sur
ces espaces.

1. Setting of the problem

Invariant operators appear in many areas of global analysis, geometry, mathem-
atical physics, etc. Their analytical properties depend very much on the symmetry
groups, which in turn determine the type of the background geometries of the under-
lying manifolds. The most appealing example is the so called conformal invariance of
many distinguished operators like Dirac, twistor, and Yamabe operators in Rieman-
nian geometry which lead to the study of all these operators in the framework of the
natural bundles for conformal Riemannian geometries. Of course, mathematicians
suggested a few schemes to classify all such operators and to discuss their properties
from a universal point of view, usually consisting of a combination of geometric and
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algebraic tools. See e.g. [41, 42, 43, 6, 7, 8, 33, 9, 28, 10]. All of them combine, in
different ways, ideas of representation theory of Lie algebras with differential geometry
and global analysis.

In the context of problems in twistor theory and its various generalizations, the
more general framework of representation theory of parabolic subgroups in semisimple
Lie groups was suggested and links to the infinite dimensional representation theory
were exploited, see e.g. the pioneering works [4, 5]. The close relation to the Tanaka’s
theory (cf. [39, 40, 17, 44, 32, 13]) was established and we may witness a fruitful
interaction of all these ideas and the classical representation theory nowadays, see e.g.
[2, 3, 12, 14, 15, 16, 18, 22, 23, 24, 25].

1.1. Parabolic geometries. — The name parabolic geometry was introduced in
[26], following Fefferman’s concept of parabolic invariant theory, cf. [19, 20], and
it seems to be commonly adopted now. The general background for these geometries
goes back to Klein’s definition of geometry as the study of homogeneous spaces, which
play the role of the flat models for geometries in the Cartan’s point of view. Thus,
following Cartan, the (curved) geometry in question on a manifold M is given by a
first order object on a suitable bundle of frames, an absolute parallelism ω : TG → g

for a suitable Lie algebra g defined on a principal fiber bundle G →M with structure
group P whose Lie algebra is contained in g. On the Klein’s homogeneous spaces
themselves, there is the canonical choice — the left–invariant Maurer–Cartan form ω

while on general G, ω has to be equivariant with respect to the adjoint action and to
recover the fundamental vector fields. These objects are called Cartan connections and
they play the role of the Levi–Civita connections in Riemannian geometry in certain
extent. A readable introduction to this background in a modern setting is to be found
in [35]. The parabolic geometries, real or complex, are just those corresponding to
the choices of parabolic subgroups in real or complex Lie groups, respectively.

Each linear representation E of the (parabolic) structure group P gives rise to the
homogeneous vector bundle E(G/P ) over the corresponding homogeneous spaceG/P ,
and similarly there are the natural vector bundles G×P E associated to each parabolic
geometry on a manifold M . Analogously, more general natural bundles G ×P S are
obtained from actions of P on manifolds S.

Morphisms ϕ : (G, ω) → (G′, ω′) are principal fiber bundle morphisms with the
property ϕ∗ω′ = ω. Obviously, the construction of the natural bundles is functorial
and so we obtain the well defined action of morphisms of parabolic geometries on
the sheaves of local sections of natural bundles. In particular, the invariant operators
on manifolds with parabolic geometries are then defined as those operators on such
sections commuting with the above actions.

1.2. First order linear operators. — In this paper, first order linear differential
operators between natural vector bundles E(M), E′(M) are just those differential
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operators which are given by linear morphisms J1E(M) → E′(M). For example, for
conformal Riemannian geometries this means that the (conformal) metrics may enter
in any differential order in their definition.

The mere existence of the absolute parallelism ω among the defining data for a
parabolic geometry on M yields an identification of all first jet prolongations J1EM
of natural bundles with natural bundles G ×P J

1E for suitable representations J1E of
P , see 2.4 below. Moreover, there is the well known general relation between invariant
differential operators on homogeneous vector bundles and the intertwining morphisms
between the corresponding jet modules. Thus, we see immediately that each first order
invariant operator between homogeneous vector bundles overG/P extends canonically
to the whole category of parabolic geometries of type (G,P ). We may say that they
are given explicitly by their symbols (which are visible on the flat model G/P ) and
by the defining Cartan connections ω.

On the other hand, the invariants of the geometries may enter into the expressions
of the invariant operators, i.e. we should consider also all possible contributions from
the curvature of the Cartan connection ω. This leads either to operators which are
not visible at all on the (locally) flat models, or to those which share the symbols
with the above ones and again the difference cannot be seen on the flat models.

In this paper we shall not deal with such curvature contributions. In fact, we
classify all invariant first order operators between the homogeneous bundles over the
flat models, which is a purely algebraic question. In the above mentioned sense, they
all extend canonically to all curved geometries.

At the same time, there are strict analogies to the Weyl connections from conformal
Riemannian geometries available for all parabolic geometries and so we shall also be
able to provide explicit universal formulae for all such operators from the classification
list in terms of these linear connections on the underlying manifolds.

This was exactly the output of Fegan’s approach in the special case of G =
SO(m + 1, 1), P the Poincaré conformal group, which corresponds to the conformal
Riemannian geometries, [21]. Since the conformal Riemannian geometries are uni-
formly one–flat (i.e. the canonical torsion vanishes), this also implies that all first
order operators on (curved) conformal manifolds, which depend on the conformal
metrics up to the first order, are uniquely given by their restrictions to the flat con-
formal spheres. We recover and vastly extend his approach. In particular, we prove the
complete algebraic classification for all parabolic subgroups in semisimple Lie groups
G. Moreover, rephrasing the first order dependence on the structure itself by the as-
sumption on the homogeneity of the operator, we obtain the unique extension of our
operators for all parabolic geometries with vanishing part of torsion of homogeneity
one.

We also show that compared to the complexity of the so called standard operators
of all orders in the Bernstein–Gelfand–Gelfand sequences, constructed first in [16] and
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developed much further in [11], the original Fegan’s approach to first order operators
is surprisingly powerful in the most general context.

Although the algebraic classification of the invariant operators does not rely on the
next section devoted to a survey on general parabolic geometries, we prefer to include
a complete line of arguments leading to full understanding of the curved extensions of
the operators and their explicit formulae in terms of the underlying Weyl connections.

2. Parabolic geometries, Weyl connections, and jet modules

2.1. Regular infinitesimal flag structures. — The homogeneous models for
parabolic geometries are the (real or complex) generalized flag manifolds G/P with
G semisimple, P parabolic. It is well known that on the level of the Lie algebras, the
choice of such a pair (g, p) is equivalent to a choice of the so called |k|–grading of a
semisimple g

g = g−k ⊕ · · · ⊕ g−1 ⊕ g0 ⊕ · · · ⊕ gk

p = g0 ⊕ · · · ⊕ gk

g− = g−k ⊕ · · · ⊕ g−1 � g/p.

Then the Cartan–Killing form provides the identification g∗i = g−i and there is the
Hodge theory on the cohomologyH∗(g−,W) for any g–module W, cf. [40, 44, 13, 16].

Now, the Maurer–Cartan form ω distributes these gradings to all frames u ∈ G

and all P–equivariant data are projected down to the flag manifolds G/P . This con-
struction goes through for each Cartan connection of type (G,P ) and so there is the
filtration

(1) TM = T−kM ⊃ T−k+1M ⊃ · · · ⊃ T−1M

on the tangent bundle TM of each manifold M underlying the principal fiber bundle
G → M with Cartan connection ω ∈ Ω1(G, g), induced by the inverse images of the
P–invariant filtration of g. Moreover, the same absolute parallelism ω induces the
reduction of the structure group of the associated graded tangent bundle

GrTM = (T−kM/T−k+1) ⊕ · · · ⊕ (T−2M/T−1M) ⊕ T−1M

to the reductive part G0 of P . In particular, this reduction introduces an algebraic
bracket on GrTM which is the transfer of the G0–equivariant Lie bracket in g−k ⊕
· · · ⊕ g−1.

Next, let M be any manifold, dimM = dim g−. An infinitesimal flag structure of
type (G,P ) on M is given by a filtration (1) on TM together with the reduction of the
associated graded tangent bundle to the structure group G0 of the form GrTxM �
Gr g−, with the freedom in G0, at each x ∈M .

Let us write { , }g0 for the induced algebraic bracket on GrTM . The infinitesimal
flag structure is called regular if [T iM,T jM ] ⊂ T i+jM for all i, j < 0 and the algebraic
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bracket { , }Lie on GrTM induced by the Lie brackets of vector fields on M coincides
with { , }g0 . It is not difficult to observe that the infinitesimal structures underlying
Cartan connections ω are regular if and only if there are only positive homogeneous
components of the curvature κ of ω, cf. [34, 14].

The remarkable conclusion resulting from the general theory claims that for each
regular infinitesimal flag structure of type (G,P ) on M , under suitable normalization
of the curvature κ (its co–closedness), there is a unique Cartan bundle G →M and a
unique Cartan connection ω on G of type (G,P ) which induces the given infinitesimal
flag structure, up to isomorphisms of parabolic geometries and with a few exceptions,
see [40, 32, 13] or [14], sections 2.7–2.11., for more details.

2.2. Examples. — The simplest and best known situation occurs for |1|–graded
algebras, i.e. g = g−1 ⊕ g0 ⊕ g1. Then the filtration is trivial, TM = T−1M , and
the regular infinitesimal flag structures coincide with standard G0–structures, i.e.
reductions of the structure group of TM to G0. The examples include the conformal,
almost Grassmannian, and almost quaternionic structures. The projective structures
correspond to g = sl(m+ 1,R), g0 = gl(m,R), and this is one of the exceptions where
some more structure has to be chosen in order to construct the canonical Cartan
connection ω. The series of papers [15] is devoted to all these geometries.

Next, the |2|–graded examples include the so called parabolic contact geometries
and, in particular, the hypersurface type non–degenerate CR-structures. See e.g. [44,
14] for more detailed discussions. Further examples of geometries are given by the
Borel subalgebras in semisimple Lie algebras, and they are modeled on the full flag
manifolds G/P .

2.3. The invariant differential. — The Cartan connection ω defines the constant
vector fields ω−1(X) on G, X ∈ g. They are defined by ω(ω−1(X)(u)) = X , for all
u ∈ G. In particular, ω−1(Z) is the fundamental vector field if Z ∈ p. The constant
fields ω−1(X) with X ∈ g− are called horizontal.

Now, let us consider any natural vector bundle EM = G ×P E. Its sections may be
viewed as P–equivariant functions s : G → E and the Lie derivative of functions with
respect to the constant horizontal vector fields defines the invariant derivative (with
respect to ω)

∇ω : C∞(G,E) → C∞(G, g∗− ⊗ E)

∇ωs(u)(X) = Lω−1(X)s(u).

We also write ∇ω
Xs for values with the fixed argument X ∈ g−.

The invariant differentiation is a helpful substitute for the Levi–Civita connections
in Riemannian geometry, but it has an unpleasant drawback: it does not produce P–
equivariant functions even if restricted to equivariant s ∈ C∞(G,E)P . One possibility
how to deal with that is to extend the derivative to all constant fields, i.e. to consider
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