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UPDATE ON TORIC GEOMETRY

by

David A. Cox

Abstract. — This paper will survey some recent work on toric varieties. The goal is
to help the reader understand how the papers in this volume relate to current trends
in toric geometry.

Introduction

In recent years, toric varieties have been an active area of research in algebraic
geometry. This article will give a partial overview of the work on toric geometry
done since the 1995 survey paper [90]. One of our main goals is to help the reader
understand the larger context of the eight papers in this volume:

[74] Semigroup algebras and discrete geometry by W. Bruns and J. Gubeladze.
[93] How to calculate A-Hilb C3 by A. Craw and M. Reid.
[94] Crepant resolutions of Gorenstein toric singularities and upper bound theorem

by D. Dais.
[96] Resolving 3-dimensional toric singularities by D. Dais.

[140] Producing good quotients by embedding into a toric variety by J. Hausen.
[159] Special McKay correspondence by Y. Ito.
[230] Lectures on height zeta functions of toric varieties by Y. Tschinkel.
[234] Toric Mori theory and Fano manifolds by J. Wísniewski.

These papers (and many others) were presented at the 2000 Summer School on the
Geometry of Toric Varieties held at the Fourier Institute in Grenoble.

We will assume that the reader is familiar with basic facts about toric varieties. We
will work over an algebraically closed field k and follow the notation used in Fulton
[121] and Oda [196], except that we use Σ to denote a fan. Recall that one can
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2 D.A. COX

think of a toric variety in many ways. First, we have the union of affine toric varieties
presented by Fulton [121] and Oda [196]:

(0.1) XΣ =
⋃
σ∈Σ

Xσ, Xσ = Spec(k[σ∨ ∩M ]).

Second, when the support of Σ spans NR, we have the categorical quotient repre-
sentation considered by Cox [89]:

(0.2) XΣ =
(
kΣ(1) � V(B)

)
/G, G = Hom(An−1(XΣ), k∗),

where B = 〈xσ̂ : σ ∈ Σ〉 and xσ̂ =
∏

ρ/∈σ(1) xρ. We call S = k[xρ : ρ ∈ Σ(1)] the ho-
mogeneous coordinate ring of XΣ, which is graded by An−1(XΣ). The representation
(0.2) is a geometric quotient if and only if Σ is simplicial.

Finally, A = {m1, . . . ,m�} ⊂ Zn gives the semigroup algebra k[tm1 , . . . , tm� ] ⊂
k[t±1

1 , . . . , t
±1
n ]. Then we have the (possibly non-normal) affine toric variety discussed

by Sturmfels [223, 224]:

(0.3) XA = Spec(k[tm1 , . . . , tm� ]).

The map xi 	→ tmi gives a surjection k[x1, . . . , x�] → k[tm1 , . . . , tm� ] whose kernel

(0.4) IA = ker(k[x1, . . . , x�] → k[tm1 , . . . , tm� ])

is the toric ideal of A. This ideal is generated by binomials and is the defining ideal
of XA ⊂ k�. If IA is homogeneous, then XA is the affine cone over the (possibly
non-normal) projective toric variety YA ⊂ P�−1.

This survey concentrates on work done since our earlier survey [90]. Hence most
of the papers we discuss appeared in 1996 or later. We caution the reader in advance
that our survey is not complete, partly for lack of space and partly for ignorance on
our part. We apologize for the many fine papers not mentioned below.

1. The Minimal Model Program and Fano Toric Varieties

The paper [234] by JarosAlaw Wísniewski discusses toric Mori theory and Fano
varieties. The main goal of the paper is to illustrate aspects of the minimal model
program using toric varieties. As Wísniewski points out, toric varieties are rational
and hence trivial from the point of view of the minimal model program. Nevertheless,
many hard results about minimal models can be proved without difficulty in the toric
case. It makes for an excellent introduction to the subject.

An important feature of the minimal model program is that singularities are un-
avoidable in higher dimensions. In our discussion of Wísniewski’s lectures, we will
assume that X is a normal projective variety such that KX is Q-Cartier (meaning
that some positive integer multiple of KX is a Cartier divisor). Such a variety is called
Q-Gorenstein. Given a resolution of singularities π : Y → X , we can write

KY = π∗(KX) +
∑

idiEi
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where the exceptional set E =
⋃

i Ei is a divisor with normal crossings. We call∑
i diEi the discrepancy divisor. Then we say that the singularities X are:

(1.1)

terminal if di > 0 for all i;

canonical if di � 0 for all i;

log-terminal if di > −1 for all i; and

log-canonical if di � −1 for all i.

Furthermore, π : Y → X is crepant if the discrepancy is zero, i.e., di = 0 for all i or,
equivalently, KY = π∗(KX). In Section 2.2, we will explain what these singularities
mean in the toric case.

1.1. Extremal Rays, Contractions, and Flips. — The first three lectures in
Wísniewski’s article [234] are based primarily on Reid [209] and discuss aspects of
the minimal model program related to the Mori cone NE(X), which is the cone of
H2(X,R) generated by homology classes of irreducible curves on X . For a simplicial
toric variety, NE(X) is generated by the torus-invariant curves in X (which corre-
spond to codimension 1 cones of the fan of X). In [234, Lec. 1], Wísniewski describes
in detail how this relates to Mori’s move-bend-break strategy.

When X is projective, the 1-dimensional faces of NE(X) are extremal rays. In the
toric case, it follows that each extremal ray is the class of a torus-invariant curve in X .
Wísniewski contrasts this with the Cone Theorem of Mori and Kawamata, which for
a general variety X gives only a partial description of NE(X).

Extremal rays are important in the minimal model program because of the Contrac-
tion Theorem of Kawamata and Shokurov, which asserts that if a projective varietyX
has terminal singularities, then every Mori ray R (= an extremal ray with R ·KX < 0)
gives a contraction

ϕR : X −→ XR

with connected fibers such that XR is normal and projective and a curve in X is
contracted to a point if and only if its class lies in R.

For an extremal ray R on a simplicial projective toric variety of dimension n,
Wísniewski gives Reid’s construction [209] of the corresponding contraction. Here is
a brief summary. Given R, define α and β to be

α = |{Dρ : Dρ · R < 0}|
β = n+ 1− |{Dρ : Dρ · R > 0}|,

where the Dρ are the torus-invariant divisors of X . These will be important invariants
of the contraction ϕR. The formulas given in [234, Lec. 2] show that α and β are
easy to compute in practice.

Now let ω be a codimension 1 cone in the fan Σ of X such that the corresponding
curve lies in R. Then ω is a face of two top-dimensional cones δ, δ′ in Σ. One can
show that the sum δ+δ′ is again a convex cone. Then consider the “fan”Σ∗

R obtained
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4 D.A. COX

from Σ by removing all such ω’s and, for each such ω, replacing the corresponding
δ, δ′ with δ + δ′. We put “fan” in parenthesis because of the following result.

Lemma 1.1. — If α > 0, then Σ∗
R is a fan, but if α = 0, then there is a subspace µ(R)

of dimension n− β such that σ ∩ −σ = µ(R) for every cone σ ∈ Σ∗
R.

The extremal ray R then gives the desired contraction ϕR : X → XR as follows:

– When α = 0, Σ∗
R is a degenerate fan. Then Σ∗

R/µ(R) becomes a fan in NR/µ(R).
Furthermore, if XR is the toric variety of Σ∗

R/µ(R), then XR has dimension β
and ϕR is a toric fibration whose fibers are weighted projective spaces.

– When α > 0, then Σ∗
R is a fan, and if XR is the toric variety of Σ∗

R, then ϕR is
birational. Furthermore:

• If α = 1, then ϕR is the blow-up of a subset of XR of dimension β − 1.
Thus the exceptional set is a divisor. Also, XR is terminal if X is.

• If α > 1, then the exceptional set of ϕR has codimension > 1, so that ϕR
is an isomorphism in codimension 2. We say that R is a small ray.

Notice how degenerate fans arise naturally in this context.
In terms of the minimal model program, the cases when α = 0 or 1 work nicely,

since in these cases we can replace X with XR. But α > 1 causes problems because
in this case, the cones δ+ δ′ are not simplicial, so that XR has bad singularities from
the minimal model point of view. This is where the next big result of the minimal
model program comes into play, the Flip Theorem. This is more properly called the
Flip Conjecture, since for general varieties, it has been proved only for dimension � 3
(by Mori). However, it is true for all dimensions in the toric case.

The rough idea is that when R is a small ray, XR isn’t suitable, so instead we “flip”
R to −R on a birational model X1 and then replace X with X1. More precisely, the
Toric Flip Theorem, as stated in [234, Lec. 3], constructs a fan Σ1 with toric variety
X1 and a birational map

ψ : X1 −−→ X

with the following properties:

– If X is terminal with KX ·R < 0 (i.e., R is a Mori ray), then X1 is terminal.
– ψ is an isomorphism in codimension 1.
– R1 = −ψ∗(R) is an extremal ray for X1 and ϕ1 = ϕR ◦ ψ : X1 → XR is the

corresponding contraction of R1.

Furthermore, Σ1 is easy to construct: using the natural decomposition of δ + δ′ into
simplices described in [234, Lec. 3], one simply replaces each cone δ + δ′ ∈ Σ∗

R with
these simplices.

There are some recent papers related to these topics. First, concerning extremal
rays, Bonavero [47] observes that if X is a projective toric variety and π : X → X ′

is a smooth toric blow-down, then X ′ is projective if and only if a line contained
in a non-trivial fiber of π is an extremal ray. He then uses this to classify certain
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smooth blow-downs to non-projective varieties. Second, concerning minimal models,
if Y ⊂ X is a hypersurface in a complete toric variety such that the intersection of
Y with every orbit is either empty or transverse of codimension 1, then S. Ishii [157]
uses the toric framework described above to show that minimal model program works
for Y , as described in the introduction to [234]. See also Ishii’s paper [156].

Returning to the lectures [234], Wísniewski points out that when X is toric and
projective, any face of NE(X) can be contracted, not just edges (= extremal rays).
This is not true for general projective varieties. Then [234, Lec. 3] ends with a
discussion of toric flips from the point of view of Morelli-WAlodarczyk corbodisms,
which is based on the work of Morelli [189] and WAlodarczyk [236]. In [234, Lec. 4],
Wísniewski defines terminal and canonical singularities as in (1.1) and explains how
these relate to the toric versions of the Contraction Theorem and Flip Theorem. He
also describes the Euler sequence of a smooth toric variety.

1.2. Fano Varieties. — In [234, Lec. 5], Wísniewski discusses Fano varieties. In
general, a normal variety X is Fano when some multiple of −KX is an ample Cartier
divisor. As explained in the introduction to [234], part of the minimal model program
includes Fano-Mori fibrations, whose fibers are Fano varieties. Wísniewski focuses on
the case of toric Fano manifolds for simplicity.

Results of Batyrev show that in any given dimension, there are at most finitely
many toric Fano manifolds (up to isomorphism). In dimension 2, it is easy to see
that there are only five: P1 × P1 together with the blow-up of P2 at 0, 1, 2 or 3 fixed
points of the torus action. In dimension 3, Wísniewski sketches the proof that there
are precisely 18 smooth toric Fano 3-folds. He also discusses the classification of
non-toric Fano manifolds, where the situation is considerably more complicated.

In dimension 4, Batyrev [28] recently published a classification of smooth toric
Fano 4-folds. As noted by Sato [220], Batyrev missed one, so that Batyrev’s list of
123 is now a list of 124 smooth toric Fano 4-folds. The key point is that toric Fano
manifolds of dimension n correspond to n-dimensional lattice polytopes P ⊂ NR � Rn

with the origin as an interior point such that the vertices of every facet are a basis of
N . (Given such a P , the cones over the faces of P give a fan whose toric variety is a
Fano manifold.) Hence the proof reduces to classifying the possible polytopes.

One can generalize the polytopes of the previous paragraph to the idea of a Fano
polytope. This is an n-dimensional lattice polytope P ⊂ NR � Rn with the property
that 0 is the unique lattice point in the interior of P . In this case, taking cones over
faces as above gives a Fano toric variety X . Furthermore, the singularities of S can
be read off from the polytope. For example, Section 2.2 below implies that:

– If the only lattice points in P are 0 plus the vertices, then X has terminal
singularities.

– If every facet of P is defined by an equation of the form 〈m,u〉 = 1 for some
m ∈M , then X is Gorenstein.
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