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HOW TO CALCULATE A -Hilb C
3

by

Alastair Craw & Miles Reid

Abstract. — Nakamura [Iku Nakamura, Hilbert schemes of abelian group orbits, J. Al-
gebraic Geom. 10 (2001), no. 4, 757–779] introduced the G-Hilbert scheme G -Hilb C3

for a finite subgroup G ⊂ SL(3, C ), and conjectured that it is a crepant resolution of
the quotient C3/G. He proved this for a diagonal Abelian group A by introducing an
explicit algorithm that calculates A -Hilb C3 . This note calculates A -Hilb C3 much
more simply, in terms of fun with continued fractions plus regular tesselations by
equilateral triangles.

1. Statement of the result

1.1. The junior simplex and three Newton polygons. — Let A ⊂ SL(3,C) be
a diagonal subgroup acting on C3. Write L ⊃ Z3 for the overlattice generated by all
the elements of A written in the form 1

r (a1, a2, a3). The junior simplex ∆ (compare
[IR], [R]) has 3 vertexes

e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1).

Write R2
∆ for the affine plane spanned by ∆, and Z2

∆ = L∩R2
∆ for the corresponding

affine lattice. Taking each ei in turn as origin, construct the Newton polygons obtained
as the convex hull of the lattice points in ∆� ei (see Figure 1.a):

(1.1) fi,0, fi,1, fi,2, . . . , fi,ki+1,

where fi,0 is the primitive vector along the side [ei, ei−1], and fi,ki+1 that along
[ei, ei+1]. (The indices i, i± 1 are cyclic. Also, since ei is the origin, the notation fi,j
denotes both the lattice point of ∆ and the corresponding vector eifi,j .) The vectors
fi,j out of ei are subject to the Jung–Hirzebruch continued fraction rule:

(1.2) fi,j−1 + fi,j+1 = ai,j · fi,j for j = 1, . . . , ki,
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where ai,j � 2. Here ri/αi = [ai,1, . . . , ai,ki ] comes from expressing Z2
∆ in terms of

the cone at ei, writing

Z
2
∆ = Z

2(fi,0, fi,ki+1) + Z · fi,1 = Z
2 + Z · 1

ri
(αi, 1),

with αi < r and coprime to r. Write Lij for the line out of ei extending or equal to
the initial segment [ei, fij ] (line is line segment throughout). The resulting fan at ei
corresponds to the Jung–Hirzebruch resolution of the surface singularity C2

(xi=0)/A.
The picture so far is the simplex ∆ with a number of lines Lij growing out of each of
the 3 vertexes (Figure 1.a).

e1

e3 e2

f1,0 f1,1

(a) (b)

Figure 1. (a) Three Newton polygons; (b) subdivision into regular triangles

1.2. Regular triangles. — Write Z2 for the group of translations of the affine
lattice Z2

∆. A regular triple is a set of three vectors v1, v2, v3 ∈ Z2, any two of which
form a basis of Z2, and such that ±v1 ± v2 ± v3 = 0. (The standard regular triple is
±(1, 0),±(0, 1),±(1, 1); it appears all over elementary toric geometry, for example, as
the fan of P

2 or the blowup of A
2.) We are only concerned with regular triples among

the vectors fi,j introduced in 1.1.
As usual, a lattice triangle T is a triangle T ⊂ R2

∆ with vertexes in Z2
∆. We say

that T is a regular triangle if each of its sides is a line Lij extending some [ei, fi,j ] and
the 3 primitive vectors v1, v2, v3 ∈ Z2 pointing along its sides form a regular triple.

It is easy to see that a regular triangle T is affine equivalent to the triangle with
vertexes (0, 0), (r, 0), (0, r) for some r � 1, called the side of T . Its regular tesselation is
that shown in Figure 2.a: a regular triangle of side r subdivides into r2 basic triangles
with sides parallel to v1, v2, v3.

A regular triangle is the thing you get as the junior simplex for the group

A = Z/r ⊕ Z/r =
〈
1
r
(1,−1, 0), 1

r
(0, 1,−1), 1

r
(−1, 0, 1)

〉
⊂ SL(3,C)

(the maximal diagonal subgroup of exponent r). The tesselation consists of basic tri-
angles with vertexes in ∆, so corresponds to a crepant resolution of the quotient sin-
gularity. It is known (see 3.2 below and [R], Example 2.2) that in this case A-HilbC3

is the toric variety associated with its regular tesselation.
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Figure 2. (a) A 5-regular triangle; (b) a (4, 12)-semiregular triangle (see 2.8.3)

1.3. The main result

Theorem 1.1. — The regular triangles partition the junior simplex ∆.

Section 2 gives an easy continued fraction procedure determining the partition;
Figure 1.b illustrates the rough idea, and worked examples are given in 2.6 below(1)

(see Figures 6–8).

Theorem 1.2. — Let Σ denote the toric fan determined by the regular tesselation (see
1.2) of all regular triangles in the junior simplex ∆. The associated toric variety YΣ
is Nakamura’s A-Hilbert scheme A -Hilb C3.

Corollary 1.3 (Nakamura). — A-HilbC3 → C3/A is a crepant resolution.

Corollary 1.4. — Every compact exceptional surface in A -Hilb C3 is either P2, a scroll
Fn or a scroll blown up in one or two points (including dP6, the del Pezzo surface of
degree 6).

1.4. Thanks. — This note is largely a reworking of original ideas of Iku Nakamura,
and MR had access over several years to his work in progress and early drafts of the
preprint [N]. MR learned the continued fraction tricks here from Jan Stevens (in a
quite different context). We are grateful to the organisers of two summer schools at
Levico in May 1999 and Lisboa in July 1999 which stimulated our discussion of this
material, and to Victor Batyrev for the question that we partially answer in 2.8.4.

1.5. Recent developments. — Since this article first appeared on the e-print
server in September 1999 there has been considerable progress in our understanding
of the G-Hilbert scheme. The most significant development is the work of Bridgeland,
King and Reid [BKR] establishing that G-Hilb C3 → C3/G is a crepant resolution for
a finite (not necessarily Abelian) subgroup G ⊂ SL(3,C). In fact [BKR] settles many

(1)Homework sheets are on the lecturer’s website www.maths.warwick.ac.uk/∼miles.
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of the outstanding issues concerning G-Hilb C3; for instance, an isomorphism between
the K theory of G-Hilb C3 and the representation ring of G is established, and the
“dynamic” versus “algebraic” definition of G-Hilb C3 is settled (see the discussion in
Section 4.1 below).

The explicit calculation of the fan Σ of A -Hilb C3 introduced in the current article
enabled AC to establish a geometric construction of the McKay correspondence. In-
deed, a certain cookery with the Chern classes of the Gonzalez-Sprinberg and Verdier
sheaves Fρ (see [R] for a discussion) leads to a Z-basis of the cohomology H∗(YΣ,Z)
for which the bijection{

irreducible representations of A
}
←→ basis of H∗(YΣ,Z)

holds, with YΣ = A -Hilb C3 (see [C1] for more details). Also, Rebecca Leng’s forth-
comingWarwick Ph.D. thesis [L] extends the explicit calculations in the current article
to some non-Abelian subgroups of SL(3,C).

Our understanding of the construction of G-Hilb C3 as a variation of GIT quo-
tient of C3/G has also improved. Work of King, Ishii and Craw (summarised in
[C2], Chapter 5) opened the way to a toric treatment of moduli of representations
of the McKay quiver (also called moduli of G-constellations to stress the link with
G-clusters). Initial evidence suggests that these moduli are flops of G-Hilb C3: every
flop of G-Hilb C3 has been constructed in this way for the quotient of C3 by the
group G = Z/2× Z/2 (see 1.2) and for the cyclic quotient singularities 1

6 (1, 2, 3) and
1
11 (1, 2, 8).

2. Concatenating continued fractions

2.1. Propellor with three blades. — The key to Theorem 1.1 is the observation
that easy games with continued fractions provide all the regular triples v1, v2, v3 (see
1.2) among the vectors fi,j . First translate the three Newton polygons at e1, e2, e3
to a common vertex, to get the propellor shape of Figure 3, in which three hexants

f1,1
f1,k+1

f2,0
f2,1

f2,l+1 f3,0

f3,1

f3,m+1

f1,0

Figure 3. “Propellor” with three “blades”
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Figure 4. Complementary cones 〈e1, e2〉 and 〈e2,−e1〉

(the blades of the propellor) have convex basic subdivisions. The primitive vectors
are read in cyclic order

f1,0, f1,1, . . . , f1,k, f1,k+1 = −f2,0, f2,1, etc.

Inverting any blade (that is, multiplying it by −1) makes the three hexants into a
basic subdivision of a half-space. Taking plus or minus all three blades gives a basic
subdivision of the plane invariant under −1.

2.2. Two complementary cones. — This digression on well-known material
(see for example [Rie], §3, pp. 220–3) illustrates several points. Let L be a 2-
dimensional lattice, and e1, e2 ∈ L primitive vectors spanning a cone in LR. Then
Z2 = Z · e1 + Z · e2 ⊂ L is a sublattice with cyclic quotient L/Z2 = Z/r; assume for
the moment that r > 1. The reduced generator is f1 = 1

r (α, 1) with 1 � α < r

and α, r coprime, so that L = Z2 + Z · 1r (α, 1). The continued fraction expansion
r/α = [a1, . . . , ak] with ai � 2 gives the convex basic subdivision 〈e1, f1〉, 〈fi, fi+1〉,
〈fk, e2〉 in the first quadrant of Figure 4.a.

Repeat the same construction for the cone 〈e2,−e1〉; for this, write the extra gen-
erator 1

r (α, 1) as 1
r (αe2, (r − 1)(−e1)). The reduced normal form is 1

r (1, β) with
αβ = (r − 1) mod r, or β = 1/(r − α) mod r. The corresponding continued fraction
r/β = [b1, . . . , bl] gives the basic subdivision e2, g1, . . . , gl,−e1 in the top left quadrant
of Figure 4.a. (In the literature, this is usually given as r/(r − α) = [bl, . . . , b1], but
we want this cyclic order.)

Now the vectors e1, f1, . . . , fk, e2, g1, . . . , gl,−e1 form a basic subdivision of the
upper half-space of L. The whole trick is the trivial observation that this cannot be
convex (downwards) everywhere, so that at e2,

(2.1) fk + g1 = ce2 with c ∈ Z and 0 � c � 1.

For vectors fk, g1 in the closed upper half-space, c = 0 is only possible if fk = e1
and g1 = −e1. Then r = 1; this is the “trivial case” with empty continued fractions,
at which induction stops. Otherwise, fk + g1 = e2. In view of this relation, put a 1
against e2, and concatenate the two continued fractions as

[a1, a2, . . . , ak, 1, b1, . . . , bl] (= 0).
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