Séminaires & Congrès 6, 2002, p. 155–186

RESOLVING 3-DIMENSIONAL TORIC SINGULARITIES

by

Dimitrios I. Dais

Abstract. — This paper surveys, in the first place, some basic facts from the classification theory of normal complex singularities, including details for the low dimensions 2 and 3. Next, it describes how the toric singularities are located within the class of rational singularities, and recalls their main properties. Finally, it focuses, in particular, on a toric version of Reid's desingularization strategy in dimension three.

1. Introduction

There are certain general *qualitative criteria* available for the rough classification of singularities of complex varieties. The main ones arise:

from the study of the punctual algebraic behaviour of these varieties (w.r.t. local rings associated to singular points) [algebraic classification]
from an intrinsic characterization for the nature of the possible exceptional

loci w.r.t. any desingularization [rational, elliptic, non-elliptic etc.]

• from the behaviour of "discrepancies" (for Q-Gorenstein normal complex varieties) [adjunction-theoretic classification]

© Séminaires et Congrès 6, SMF 2002

²⁰⁰⁰ Mathematics Subject Classification. — 14M25; 14B05, 32S05. Key words and phrases. — Canonical singularities, toric singularities.

D.I. DAIS

Algebraic Classification. — At first we recall some fundamental definitions from commutative algebra (cf. [52], [54]). Let R be a commutative ring with 1. The *height* $ht(\mathfrak{p})$ of a prime ideal \mathfrak{p} of R is the supremum of the lengths of all prime ideal chains which are contained in \mathfrak{p} , and the *dimension* of R is defined to be

 $\dim (R) := \sup \left\{ \operatorname{ht} \left(\mathfrak{p} \right) \mid \mathfrak{p} \text{ prime ideal of } R \right\}.$

R is *Noetherian* if any ideal of it has a finite system of generators. *R* is a *local ring* if it is endowed with a *unique* maximal ideal \mathfrak{m} . A local ring *R* is *regular* (resp. *normal*) if dim(R) = dim($\mathfrak{m}/\mathfrak{m}^2$) (resp. if it is an integral domain and is integrally closed in its field of fractions). A finite sequence a_1, \ldots, a_{ν} of elements of a ring *R* is defined to be a *regular sequence* if a_1 is not a zero-divisor in *R* and for all $i, i = 2, \ldots, \nu, a_i$ is not a zero-divisor of $R/\langle a_1, \ldots, a_{i-1} \rangle$. A Noetherian local ring *R* (with maximal ideal \mathfrak{m}) is called *Cohen-Macaulay* if

$$\operatorname{depth}\left(R\right) = \dim\left(R\right),$$

where the *depth* of R is defined to be the maximum of the lengths of all regular sequences whose members belong to \mathfrak{m} . A Cohen-Macaulay local ring R is called *Gorenstein* if

$$\operatorname{Ext}_{R}^{\dim(R)}(R/\mathfrak{m},R)\cong R/\mathfrak{m}.$$

A Noetherian local ring R is said to be a *complete intersection* if there exists a regular local ring R', such that $R \cong R'/(f_1, \ldots, f_q)$ for a finite set $\{f_1, \ldots, f_q\} \subset R'$ whose cardinality equals $q = \dim(R') - \dim(R)$. The hierarchy by inclusion of the above types of Noetherian local rings is known to be described by the following diagram:

	{Noetherian local rings}	\supset {normal local rings}
	U	U
(1.1)	{Cohen-Macaulay local rings}	$\{\text{regular local rings}\}$
	U	\cap
	$\{Gorenstein local rings\}$	\supset {complete intersections ("c.i.'s")}

An arbitrary Noetherian ring R and its associated affine scheme $\operatorname{Spec}(R)$ are called Cohen-Macaulay, Gorenstein, normal or regular, respectively, iff all the localizations $R_{\mathfrak{m}}$ with respect to all the members $\mathfrak{m} \in \operatorname{Max-Spec}(R)$ of the maximal spectrum of R are of this type. In particular, if the $R_{\mathfrak{m}}$'s for all maximal ideals \mathfrak{m} of R are c.i.'s, then one often says that R is a *locally complete intersection* ("l.c.i.") to distinguish it from the "global" ones. (A global complete intersection ("g.c.i.") is defined to be a ring R of finite type over a field \mathbf{k} (i.e., an affine \mathbf{k} -algebra), such that

$$R \cong \boldsymbol{k} \left[\mathsf{T}_{1} ..., \mathsf{T}_{d} \right] / \left(\varphi_{1} \left(\mathsf{T}_{1} ..., \mathsf{T}_{d} \right) ..., \varphi_{q} \left(\mathsf{T}_{1} ..., \mathsf{T}_{d} \right) \right)$$

for q polynomials $\varphi_1, \ldots, \varphi_q$ from $\mathbf{k}[\mathsf{T}_1, \ldots, \mathsf{T}_d]$ with $q = d - \dim(R)$). Hence, the above inclusion hierarchy can be generalized for all Noetherian rings, just by omitting in (1.1) the word "local" and by substituting l.c.i.'s for c.i.'s.

SÉMINAIRES & CONGRÈS 6

We shall henceforth consider only *complex varieties* (X, \mathcal{O}_X) , i.e., integral separated schemes of finite type over $\mathbf{k} = \mathbb{C}$; thus, the punctual algebraic behaviour of X is determined by the stalks $\mathcal{O}_{X,x}$ of its structure sheaf \mathcal{O}_X , and X itself is said to have a given *algebraic property* whenever all $\mathcal{O}_{X,x}$'s have the analogous property from (1.1) for all $x \in X$. Furthermore, via the GAGA-correspondence ([**71**], [**30**, §2]) which preserves the above quoted algebraic properties, we may work within the *analytic category* by using the usual contravariant functor

$$(X, x) \rightsquigarrow \mathcal{O}_{X, x}^{\mathrm{hol}}$$

between the category of isomorphy classes of germs of X and the corresponding category of isomorphy classes of analytic local rings at the marked points x. For a complex variety X and $x \in X$, we denote by $\mathfrak{m}_{X,x}$ the maximal ideal of $\mathcal{O}_{X,x}^{hol}$ and by

(1.2)
$$\operatorname{Sing}(X) = \left\{ x \in X \mid \mathcal{O}_{X,x}^{\operatorname{hol}} \text{ is a non-regular local ring} \right\} \\ = \left\{ x \in X \mid \dim\left(\mathfrak{m}_{X,x}/\mathfrak{m}_{X,x}^{2}\right) > \dim_{x}\left(X\right) \right\}$$

its singular locus. By a desingularization (or resolution of singularities) $f: \hat{X} \to X$ of a non-smooth X, we mean a "full" or "overall" desingularization (if not mentioned), i.e., $\operatorname{Sing}(\hat{X}) = \emptyset$. When we deal with *partial* desingularizations, we mention it explicitly.

Rational and Elliptic Singularities. — We say that X has (at most) rational singularities if there exists a desingularization $f: Y \to X$ of X, such that

$$f_*\mathcal{O}_Y = \mathcal{O}_X$$

(equivalently, Y is normal), and

$$R^i f_* \mathcal{O}_Y = 0, \quad \forall i, \quad 1 \leq i \leq \dim_{\mathbb{C}} X - 1$$

(The i-th direct image sheaf is defined via

$$U \longmapsto R^{i} f_{*} \mathcal{O}_{Y} \left(U \right) := H^{i} \left(f^{-1} \left(U \right), \mathcal{O}_{Y} |_{f^{-1} \left(U \right)} \right) \right).$$

This definition is independent of the particular choice of the desingularization of X. (Standard example: quotient singularities⁽¹⁾ are rational singularities).

We say that a Gorenstein singularity x of X is an *elliptic singularity* if there exists a desingularization $f: Y \to X$ of $x \in X$, such that

$$R^i f_* \mathcal{O}_Y = 0, \quad \forall i, \quad 1 \leq i \leq \dim_{\mathbb{C}} X - 2,$$

$$\operatorname{Sing}\left(\mathbb{C}^{r}/G\right) = p\left(\left\{\boldsymbol{z} \in \mathbb{C}^{r} \mid G_{\boldsymbol{z}} \neq \left\{\operatorname{Id}\right\}\right\}\right)$$

(cf. (1.2)), where $G_{\boldsymbol{z}} := \{ \boldsymbol{g} \in G \mid \boldsymbol{g} \cdot \boldsymbol{z} = \boldsymbol{z} \}$ is the isotropy group of $\boldsymbol{z} \in \mathbb{C}^r$.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002

⁽¹⁾The quotient singularities are of the form $(\mathbb{C}^r/G, [\mathbf{0}])$, where G is a finite subgroup of $\operatorname{GL}(r, \mathbb{C})$ (without pseudoreflections) acting linearly on \mathbb{C}^r , $p : \mathbb{C}^r \to \mathbb{C}^r/G = \operatorname{Spec}(\mathbb{C}[\boldsymbol{z}]^G)$ the quotient map, and $[\mathbf{0}] = p(\mathbf{0})$. Note that

D.I. DAIS

and

$$R^{\dim_{\mathbb{C}} X - 1} f_* \mathcal{O}_Y \cong \mathbb{C}.$$

(The definition is again independent of the particular choice of the desingularization).

Adjunction-Theoretic Classification. — If X is a *normal* complex variety, then its Weil divisors can be described by means of "divisorial" sheaves as follows:

Lemma 1.1 ([34, 1.6]). — For a coherent sheaf \mathcal{F} of \mathcal{O}_X -modules the following conditions are equivalent:

(i) \mathcal{F} is reflexive (i.e., $\mathcal{F} \cong \mathcal{F}^{\vee\vee}$, with $\mathcal{F}^{\vee} := Hom_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$ denoting the dual of \mathcal{F}) and has rank one.

(ii) If X^0 is a non-singular open subvariety of X with $\operatorname{codim}_X(X \setminus X^0) \ge 2$, then $\mathcal{F}|_{X^0}$ is invertible and

$$\mathcal{F} \cong \iota_* \left(\mathcal{F} \mid_{X^0} \right) \cong \iota_* \iota^* \left(\mathcal{F} \right),$$

where $\iota: X^0 \hookrightarrow X$ denotes the inclusion map.

The *divisorial sheaves* are exactly those satisfying one of the above conditions. Since a divisorial sheaf is torsion free, there is a non-zero section $\gamma \in H^0(X, Rat_X \otimes_{\mathcal{O}_X} \mathcal{F})$, with

$$H^{0}(X, Rat_{X} \otimes_{\mathcal{O}_{X}} \mathcal{F}) \cong \mathbb{C}(X) \cdot \gamma_{2}$$

and \mathcal{F} can be considered as a subsheaf of the constant sheaf Rat_X of rational functions of X, i.e., as a special *fractional ideal sheaf*.

Proposition 1.2 ([63, App. of § 1]). — The correspondence

$$Cl(X) \ni \{D\} \xrightarrow{\delta} \{\mathcal{O}_X(D)\} \in \left\{ \begin{array}{l} divisorial \ coherent \\ subsheaves \ of \ Rat_X \end{array} \right\} / H^0(X, \mathcal{O}_X^*)$$

with $\mathcal{O}_{X}(D)$ defined by sending every non-empty open set U of X onto

$$U \longmapsto \mathcal{O}_X(D)(U) := \left\{ \varphi \in \mathbb{C}(X)^* \mid (\operatorname{div}(\varphi) + D) \mid_U \ge 0 \right\} \cup \{0\}$$

is a bijection, and induces a \mathbb{Z} -module isomorphism. In fact, to avoid torsion, one defines this \mathbb{Z} -module structure by setting

$$\delta\left(D_1+D_2\right):=\left(\mathcal{O}_X\left(D_1\right)\otimes\mathcal{O}_X\left(D_2\right)\right)^{\vee\vee}\text{and }\delta\left(\kappa D\right):=\mathcal{O}_X\left(D\right)^{[\kappa]}=\mathcal{O}_X\left(\kappa D\right)^{\vee\vee},$$

for any Weil divisors D, D_1, D_2 and $\kappa \in \mathbb{Z}$.

Let now $\Omega_{\operatorname{Reg}(X)/\mathbb{C}}$ be the sheaf of regular 1-forms, or Kähler differentials, on

$$\operatorname{Reg}\left(X\right) = X \smallsetminus \operatorname{Sing}\left(X\right) \stackrel{\iota}{\hookrightarrow} X,$$

(cf. [36, §5.3]) and for $i \ge 1$, let us set

$$\Omega^{i}_{\operatorname{Reg}(X)/\mathbb{C}} := \bigwedge^{i} \Omega_{\operatorname{Reg}(X)/\mathbb{C}} .$$

SÉMINAIRES & CONGRÈS 6

The unique (up to rational equivalence) Weil divisor K_X , which maps under δ to the canonical divisorial sheaf

$$\omega_X := \iota_* \left(\Omega^{\dim_{\mathbb{C}}(X)}_{\operatorname{Reg}(X)/\mathbb{C}} \right),$$

is called the *canonical divisor* of X. Another equivalent interpretation of ω_X , when X is Cohen-Macaulay, can be given by means of the Duality Theory (see [**32**], [**29**]). If $\mathbb{D}_c^+(\mathcal{O}_X)$ denotes the derived category of below bounded complexes whose cohomology sheaves are coherent, then there exists a *dualizing complex*⁽²⁾ $\omega_X^{\bullet} \in \mathbb{D}_c^+(\mathcal{O}_X)$ over X. If X is Cohen-Macaulay, then the *i*-th cohomology sheaf $\mathcal{H}^i(\omega_X^{\bullet})$ vanishes for all $i \in \mathbb{Z} \setminus \{-\dim_{\mathbb{C}}(X)\}$, and $\omega_X \cong \mathcal{H}^{-\dim_{\mathbb{C}}(X)}(\omega_X^{\bullet})$. This leads to the following:

Proposition 1.3. — A normal complex variety X is Gorenstein if and only if it is Cohen-Macaulay and ω_X is invertible.

Proof. — If X is Gorenstein, then $\mathcal{O}_{X,x}$ satisfies the equivalent conditions of [54, Thm. 18.1], for all $x \in X$. This means that $\mathcal{O}_{X,x}$ (as Noetherian local ring) is a dualizing complex for itself (cf. [32, Ch. V, Thm. 9.1, p. 293]). Since dualizing complexes are unique up to tensoring with an invertible sheaf, say L, over X, shifted by an integer n (cf. [32, Ch. V, Cor. 2.3, p. 259]), we shall have $\omega_X^{\bullet} \cong \mathcal{O}_{X,x}^{\bullet} \otimes L[n]$. Hence, ω_X itself will be also invertible. The converse follows from the isomorphisms $\omega_X \cong \mathcal{H}^{-\dim_{\mathbb{C}}(X)}(\omega_X^{\bullet})$ and $\omega_{X,x} \cong \mathcal{O}_{X,x}$, for all $x \in X$. (Alternatively, one may use the fact that $x \in X$ is Gorenstein iff $\mathcal{O}_{X,x}$ is Cohen-Macaulay and $H_{\mathfrak{m}_{X,x}}^{\dim_{\mathbb{C}}(X)}(\mathcal{O}_{X,x})$ is a dualizing module for it, cf. [29, Prop. 4.14, p. 65]. The classical duality [29, Thm. 6.3, p. 85], [32, Ch. V, Cor. 6.5, p. 280], combined with the above uniqueness argument, gives again the required equivalence). □

Theorem 1.4 (Kempf [43, p. 50], Elkik [23], [24], Bingener-Storch [5])

Let X a normal complex variety of dimension ≥ 2 . Then

$$\begin{pmatrix} X \text{ has at most} \\ rational singularities \end{pmatrix} \iff \begin{pmatrix} X \text{ is Cohen-Macaulay} \\ and \omega_X \cong f_*\omega_Y \end{pmatrix},$$

where $f: Y \longrightarrow X$ is any desingularization of X.

(Note that, if $E = f^{-1}(\text{Sing}(X))$ and $\iota : \text{Reg}(X) \hookrightarrow X, j : Y \setminus E \hookrightarrow Y$ are the natural inclusions, then by the commutative diagram

$$\begin{array}{c} Y \smallsetminus E & \stackrel{f}{\longleftarrow} Y \\ \downarrow l & \qquad \downarrow f \\ \operatorname{Reg}\left(X\right) & \stackrel{\ell}{\longleftarrow} X \end{array}$$

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002

⁽²⁾There is a canonical morphism $\omega_X [\dim_{\mathbb{C}} (X)] \to \omega_X^{\bullet}$ which is a quasi-isomorphism iff X is Cohen-Macaulay.