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CREPANT RESOLUTIONS OF GORENSTEIN TORIC
SINGULARITIES AND UPPER BOUND THEOREM

by

Dimitrios I. Dais

Abstract. — A necessary condition for the existence of torus-equivariant crepant res-
olutions of Gorenstein toric singularities can be derived by making use of a variant
of the classical Upper Bound Theorem which is valid for simplicial balls.

1. Introduction

Let d be a positive integer, σ ⊂ R
d+1 a rational, (d + 1)-dimensional strongly convex

polyhedral cone (w.r.t. the lattice Zd+1), and

Uσ = Spec
(
C

[
σ∨ ∩ (Zd+1)∨

])
the associated affine toric variety, where σ∨ denotes the dual of σ. (For the usual
notions of toric geometry, see [7]). As it is known (see e.g. [10, §6]):

Theorem 1.1. — Uσ is Gorenstein if and only if the set Gen(σ) of the minimal gen-
erating integral vectors of σ lies on a “primitive” affine hyperplane, i.e., iff

Gen (σ) ⊂ Hσ =
{
x ∈ R

d+1 | 〈mσ, x〉 = 1
}

,

where mσ ∈ (Zd+1)∨ is a primitive vector belonging to the dual lattice.

Remark 1.2
(i) In this case, σ supports the d-dimensional lattice polytope

(1.1) Pσ = {x ∈ σ | 〈mσ, x〉 = 1} ⊂ Hσ
∼= R

d

(w.r.t. the lattice Hσ ∩ Zd+1 ∼= Zd).

(ii) In fact, every lattice d-polytope P ⊂ Rd can be considered as supported by a cone

σP =
{
(r, rx) ∈ R ⊕ R

d | x ∈ P, r ∈ R�0

}
⊂ R

d+1

so that UσP is Gorenstein.

2000 Mathematics Subject Classification. — 14M25, 52B20; 14B05, 52B05, 52B11.
Key words and phrases. — Toric singularities, Gorenstein singularities, upper bound theorem.
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The (d+ 1)-dimensional Gorenstein toric singularities(1) (Uσ, orb (σ)) constructed by
cones σ which support lattice d-polytopes P = Pσ are to be subdivided into three
distinct classes(2):

(A) Terminal singularities (whenever P is an elementary polytope but not a basic
simplex).

(B) Canonical, non-terminal singularities which do not admit any crepant resolution
(i.e., for which P is a non-elementary polytope having no basic triangulations).

(C) Canonical, non-terminal singularities admitting crepant resolutions (i.e., for
which P is a non-elementary polytope possessing at least one basic triangulation).

Comments. — A complete classification of the members of class (A) (up to analytic
isomorphism) is obviously equivalent to the classification of elementary polytopes (up
to lattice automorphism). For constructions of several families belonging to (C), the
reader is referred to [1], [2], [3], [4], [5]. In fact, for one- or two-parameter Gorenstein
cyclic quotient singularities, it is possible to decide definitely if they belong to class
(A), (B) or (C), by just checking some concrete number-theoretic (necessary and
sufficient existence-) conditions (see [3] and [2], respectively). On the other hand, for
general Gorenstein toric (not necessarily quotient-) singularities, a necessary condition
for the existence of crepant resolutions can be created via an UBT for simplicial balls,
as we shall see below in Thm.3.1. Hence, its “violation” may be used to produce
families of such singularities belonging to (B).

2. Basic facts about UBT’s

Notation
(i) The f -vector f (S) = (f0 (S) , f1 (S) , . . . , fd−1 (S)) of a polyhedral (d − 1)-complex
S is defined by setting for all i, 0 � i � d − 1,

fi (S) := # {i-dimensional faces of S}
(under the usual conventional extension: f−1 (S) := 1). The coordinates of the h-
vector h (S) = (h0 (S) , h1 (S) , . . . , hd−1 (S) , hd (S)) of such an S are defined by the
equations

(2.1) hj (S) =
j∑

i=0

(−1)j−i (
d−i
d−j

)
fi−1 (S) .

(1)Without loss of generality, we may henceforth assume that the cones σ ⊂ R
d+1 are (d + 1)-

dimensional, and that the singularities under consideration have maximal splitting codimension.

(The orbit orb(σ) ∈ Uσ is the unique fixed closed point under the usual torus-action on Uσ.)
(2)A lattice polytope P is called elementary if the lattice points belonging to it are exactly its

vertices. A lattice simplex is said to be basic (or unimodular) if its vertices constitute a part of a

Z-basis of the reference lattice (or equivalently, if its relative, normalized volume equals 1). A lattice

triangulation T of a lattice polytope P is defined to be maximal (resp. basic), if it consists only of

elementary (resp. basic) simplices.
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CREPANT RESOLUTIONS OF GORENSTEIN TORIC SINGULARITIES 189

(ii) For a d-dimensional polytope P, the boundary complex S∂P of P is defined to
be the (d − 1)-dimensional polyhedral complex consisting of the proper faces of P

together with ∅ and having ∂P as its support. S∂P is a polyhedral (d − 1)-sphere.
S∂P is a geometric pure simplicial complex (in fact, a simplicial (d − 1)-sphere) if
and only if P is a simplicial polytope. The f -vector f (P ) of a d-polytope P is by
definition the f -vector f (S∂P ) of its boundary complex.

(iii) We denote by CycPd (k) the cyclic d-polytope with k vertices. As it is known,
the number of its facets equals

(2.2) fd−1 (CycPd (k)) =
(k−� d

2�
�d

2 �
)
+

(k−1−� d−1
2 �

� d−1
2 �

)
This follows from Gale’s evenness condition and the fact that CycPd (k) is

⌊
d
2

⌋
-

neighbourly (cf. [13, p. 24]).

(iv) Classical UB and LB-Theorems for simplicial spheres (see [9] and [6]):

Theorem 2.1 (Stanley’s Upper Bound Theorem for Simplicial Spheres)
The f-vector coordinates of a simplicial (d − 1)-sphere S with f0 (S) = k vertices

satisfy the following inequalities:

fi (S) � fi (CycPd (k)) , ∀ i , 0 � i � d − 1.

Theorem 2.2 (Lower Bound Theorem for Simplicial Spheres). — The h-vector coordi-
nates of a simplicial (d − 1)-sphere S with f0 (S) = k vertices satisfy the following
inequalities :

h1 (P ) = k − d � hi (P ) , ∀ i , 2 � i � d.

Besides them we need certain variants for simplicial balls.

Proposition 2.3 (“h of ∂”−Lemma). — Let S be a d-dimensional Cohen-Macaulay
closed pseudomanifold with non-empty boundary ∂S. Then

(2.3) hi−1 (∂S)− hi (∂S) = h(d+1)−i (S)− hi (S) , ∀i, 0 � i � d + 1

(under the convention: h−1 (∂S) = 0).

Proof. — See Stanley ([12, 2.3]).

Working with Buchsbaum complexes, Schenzel [8] proved the following:

Theorem 2.4 (Schenzel’s Upper Bound Theorem). — Let S be a d-dimensional Buchs-
baum complex (3) having f0 (S) = b vertices. Then for all i, 0 � i � d+1, the h-vector

(3)A simplicial complex S is a Buchsbaum complex over a field k if and only if it is pure and the

localizations k [S]℘ of k [S] w.r.t. prime ideals ℘ �= k [S]+ (=
L

ν>0

�
k [S]ν

�
are Cohen-Macaulay.

(For instance, homology d-manifolds without boundary, or homology d-manifolds whose boundary is

a homology (d − 1)-manifold without boundary, are Buchsbaum). Moreover, S is Cohen-Macaulay

over k if an only if S is Buchsbaum over k and dimk
eHj (S;k) = 0, for all i, 0 6 i 6 d − 1, while

dimk
eHd (S;k) = (−1)d eχ (S), with eχ (S) the reduced Euler characteristic.
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coordinates of S satisfy the inequalities

(2.4) hi (S) �
(
b−d+i−2

i

)
− (−1)i

(
d+1

i

) i−2∑
j=−1

(−1)j dimkH̃j (S;k)

(where H̃j (S;k) are the reduced homology groups of S with coefficients in a field k.)

Corollary 2.5. — Let S denote a simplicial d-dimensional ball with f0 (S) = b vertices.
Then for all i, 0 � i � d, the f-vector of S satisfies the following inequalities:

(2.5) fi (S) � fi
(
CycPd+1 (b)

)
−

� d
2 �∑

j=d−i

(
j

d−i

)
(hj (∂S)− hj−1 (∂S)) ,

Proof. — Introduce the auxiliary vector h̃ (S) =
(
h̃0 (S) , . . . , h̃d+1 (S)

)
with

ehi (S) :=

8<
:
hi (S) , for 0 6 i 6

�
d+1
2

�
hi (S) − (hd−i (∂S) − hd+1−i (∂S)) , for

�
d+1
2

�
+ 1 6 i 6 d + 1

Since S is Cohen-Macaulay, S is a Buchsbaum complex. Moreover, all reduced ho-
mology groups H̃j (S;k) are trivial, which means that

hi (S) � hi

(
CycPd+1 (b)

)
=

(
b−d+i−2

i

)
, ∀i, 0 � i �

⌊
d+1
2

⌋
,

by (2.4). On the other hand, (2.3) implies for the coordinates of h̃ (S):
h̃i (S) = h̃(d+1)−i (S) , ∀i, 0 � i � d+ 1,

and therefore

(2.6) h̃i (S) � hi

(
CycPd+1 (b)

)
, ∀i, 0 � i � d + 1 .

Hence,

fi (S) =

i+1X
j=0

�
d+1−j

d−i

�
hj (S)

=

i+1X
j=0

�
d+1−j

d−i

� ehj (S) +

i+1X
j=� d

2 �+1

�
d+1−j

d−i

�
(hd−j (∂S) − hd+1−j (∂S))

=

i+1X
j=0

�
d+1−j

d−i

� ehj (S) +

� d
2 �X

j=d−i

�
j

d−i

�
(hj−1 (∂S) − hj (∂S)) [by interchanging

(d + 1) − j and j, and using the Dehn-Sommerville relations for h (∂S)]

6

i+1X
j=0

�
d+1−j

d−i

�
hi

�
CycPd+1 (b)

�
+

� d
2 �X

j=d−i

�
j

d−i

�
(hj−1 (∂S) − hj (∂S)) [by (2.6)]

= fi
�
CycPd+1 (b)

�
−

� d
2 �X

j=d−i

�
j

d−i

�
(hj (∂S) − hj−1 (∂S))

for all i, 0 � i � d.
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Corollary 2.6. — Let S be a simplicial d-ball with f0 (S) = b vertices. Suppose that
f0 (∂S) = b′. Then:

(2.7) fd (S) � fd
(
CycPd+1 (b)

)
− (b′ − d)

Proof. — For i = d, (2.5) gives

fd (S) � fd
(
CycPd+1 (b)

)
−
�d

2 �∑
j=0

(hj (∂S)− hj−1 (∂S))

= fd
(
CycPd+1 (b)

)
− h� d

2� (∂S)

� fd
(
CycPd+1 (b)

)
− h1 (∂S) ,

where the latter inequality comes from the LBT 2.2 for the simplicial sphere ∂S. Now
obviously, h1 (∂S) = b′ − d.

3. Crepant Resolutions and UBT

Let (Uσ, orb (σ)) be a Gorenstein toric singularity as in §1 (cf. Thm.1.1).

Theorem 3.1 (Necessary Existence Condition). — If Uσ admits a crepant desingular-
ization, then the normalized volume of the lattice polytope Pσ (defined in (1.1)) has
the following upper bound (4)

(3.1) Volnorm (Pσ) � fd
(
CycPd+1(#(Pσ ∩ Z

d))
)
−

(
#(∂Pσ ∩ Z

d)− d
)

Proof. — If Uσ admits a crepant desingularization, then there must be a basic trian-
gulation, say T of Pσ. Since this T is, in particular, maximal, we have

(3.2) vert (T ) = Pσ ∩ Z
d, vert (∂T ) = ∂Pσ ∩ Z

d.

On the other hand,

(3.3) Volnorm (Pσ) = fd (T ) .

Finally, since T is a simplicial d-ball, one deduces (3.1) from (2.7), (3.2), (3.3).

Example 3.2. — Let

σ = R�0 e1 + R�0 e2 + R�0 e3 + R�0 (−3,−7,−9, 20)⊂ R
4

be the four-dimensional cone supporting the lattice 3-simplex

sσ = conv ({e1, e2, e3, (−3,−7,−9, 20)}) = {x ∈ σ | 〈mσ, x〉 = 1} ,

(4)By abuse of notation, we write Zd instead of Hσ ∩Zd+1 (∼= Z
d)
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