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LECTURES ON HEIGHT ZETA FUNCTIONS
OF TORIC VARIETIES

by

Yuri Tschinkel

Abstract. — We explain the main ideas and techniques involved in recent proofs of
asymptotics of rational points of bounded height on toric varieties.

1. Introduction

Toric varieties are an ideal testing ground for conjectures: their theory is sufficiently
rich to reflect general phenomena and sufficiently rigid to allow explicit combinato-
rial computations. In these notes I explain a conjecture in arithmetic geometry and
describe its proof for toric varieties.
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1.1. Counting problems

Example 1.1.1. — Let X ⊂ Pn be a smooth hypersurface given as the zero set of a
homogeneous form f of degree d (with coefficients in Z). Let

N(X,B) = #{x | f(x) = 0, max(|xj |) � B}
(where x = (x0, . . . , xn) ∈ Zn+1/(±1) with gcd(xj) = 1) be the number of Q-rational
points on X of “height” � B. Heuristically, the probability that f represents 0 is
about B−d and the number of “events” about Bn+1. Thus we expect that

lim
B→∞

N(X,B) ∼ Bn+1−d.
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This can be proved by the circle method, at least when n� 2d. The above heuristic
leads to a natural trichotomy, corresponding to the possibilities when n+1−d positive,
zero or negative. In the first case we expect many rational points on X , in the third
case very few and in the intermediate case we don’t form an opinion.

Example 1.1.2. — Let X ⊂ Pn × Pn be a hypersurface given as the zero set of a
bihomogeneous diagonal form of bidegree (d1, d2):

f(x,y) =
n∑
k=0

akx
d1
k · yd2k ,

with ak ∈ Z. Each pair of positive integers L = (l1, l2) defines a counting function on
rational points X(Q) by

N(X,L,B) = #{(x,y) | f(x,y) = 0, max(|xi|)l1 · max(|yj |)l2 � B}

(where x,y ∈ Z(n+1)/(±1) with gcd(xi) = gcd(yj) = 1). Heuristics as above predict
that the asymptotic should depend on the vector

−K = (n+ 1 − d1, n+ 1 − d2)

and on the location of L with respect to −K.
An interesting open problem is, for example, the case when (d1, d2) = (1, 2), n = 3

and L = (3, 2). Notice that this variety is a compactification of the affine space. For
appropriate ak one expects ∼ B log(B) rational points of height bounded by B.

Trying to systematize such examples one is naturally lead to the following problems:

Problem 1.1.3. — Let X ⊂ Pn be an algebraic variety over a number field. Relate the
asymptotics of rational points of bounded height to geometric invariants of X .

Problem 1.1.4. — Develop analytic techniques proving such asymptotics.

1.2. Zariski density. — Obviously, not every variety is a hypersurface in a pro-
jective space or product of projective spaces. To get some systematic understanding
of the distribution of rational points we need to use ideas from classification theories
of algebraic varieties. On a very basic level (smooth projective) algebraic varieties
are distinguished according to the ampleness of the canonical class: Fano varieties
(big anticanonical class), varieties of general type (big canonical class) and varieties
of intermediate type (neither). The conjectures of Bombieri-Lang-Vojta predict that
on varieties of general type the set of rational points is not Zariski dense (see [46]).
Faltings proved this for subvarieties of abelian varieties ([16]). It is natural to ask
for a converse. As the examples of Colliot-Thélène, Swinnerton-Dyer and Skoroboga-
tov suggest (see [11]), the most optimistic possibility would be: if X does not have
finite étale covers which dominate a variety of general type then there exists a finite
extension E/F such that X(E) is Zariski dense in X . In particular, this should hold
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for Fano varieties. I have no idea how to prove this for a general smooth quintic
hypersurface in P5. Quartic hypersurfaces in P4 are treated in [22] (see also [23]).

Clearly, we need Zariski density of rational points on X before attempting to
establish a connection between the global geometry of X and X(F ). Therefore, we
will focus on varieties birational to the projective space or possessing a large group
of automorphisms so that rational points are a priori dense, at least after a finite
extension. In addition to allowing finite field extensions we will need to restrict to
some appropriate Zariski open subsets.

Example 1.2.1. — Let X be the cubic surface x30 + x31 + x32 + x33 = 0 over Q. We
expect ∼ B(log(B))3 rational points of height max(|xj |) � B. However, on the lines
like x0 = −x1 and x2 = −x3 we already have ∼ B2 rational points. Numerical
experiments in [39] confirm the expected growth rate on the complement to the lines;
and Heath-Brown proved the upper bound O(B4/3+ε) [24]. Thus the asymptotic of
points on the whole X will be dominated by the contribution from lines, and it is
futile to try to read off geometric invariants of X from what is happening on the lines.

Such Zariski closed subvarieties will be called accumulating. Notice that this notion
may depend on the projective embedding.

1.3. Results. — Let X be a smooth projective algebraic variety over a number
field F and L a very ample line bundle on X . It defines an embedding X ↪→ Pn. Fix
a “height” on the ambient projective space. For example, we may take

H(x) :=
∏
v

max
j

(|xj |v),

where x = (x0, . . . , xn) ∈ Pn(F ) and the product is over all (normalized) valuations
of F . To highlight the choice of the height we will write L for the pair (L-embedding,
height). We get an induced (exponential) height function

HL : X(F ) −→ R>0

on the set of F -rational points X(F ) (see 4.1 for more details). The set of F -rational
points of height bounded by B > 0 is finite and we can define the counting function

N(U,L, B) := #{x ∈ U(F ) |HL(x) � B},
where U ⊂ X is a Zariski open subset.

Theorem 1.3.1. — Let X/F be one of the following varieties:
• toric variety [5];
• equivariant compactification of Gna [9];
• flag variety [18];
• equivariant compactification of G/U - horospherical variety (where G is a semi-

simple group and U ⊂G a maximal unipotent subgroup) [41];
• smooth complete intersection of small degree (for example, [6]).
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Let L be an appropriate height on X such that the class L ∈ Pic(X) is contained
in the interior of the cone of effective divisors.

Then there exists a dense Zariski open subset U ⊂ X and constants

a(L), b(L),Θ(U,L) > 0

such that

N(U,L, B) =
Θ(U,L)

a(L)(b(L)− 1)!
Ba(L)(log(B))b(L)−1(1 + o(1)),

as B → ∞.

Remark 1.3.2. — The constants a(L) and b(L) depend only on the class of L in Pic(X).
The constant Θ(U,L) depends, of course, not only on the geometric data (U,L) but
also on the choice of the height. It is interpreted, in a general context, in [5].

Remark 1.3.3. — Notice that with the exception of complete intersections the varieties
from Theorem 1.3.1 have a rather simple “cellular” structure. In particular, we can
parametrize all rational points in some dense Zariski open subset. The theorem is to
be understood as a statement about heights: even the torus G2

m has very nontrivial
embeddings into projective spaces and in each of these embeddings we have a different
counting problem.

1.4. Techniques. — Let G be an algebraic torus or the group Gna . The study of
height asymptotics in these cases uses harmonic analysis on the adelic points G(A):

(1) Define a height pairing

H =
∏
v

Hv : PicG(X)C ×G(A) −→ C,

(where PicG(X) is the group of isomorphism classes of G-linearized line bundles on
X) such that its restriction to L ∈ Pic(X)×G(F ) is the usual height L as before and
such that H is invariant under a standard compact subgroup K ⊂ G(A).

(2) Define the height zeta function

Z(G, s) =
∑

x∈G(F )

H(s;x)−1.

The projectivity of X implies that Z(G, s) converges for �(s) in some (shifted) open
cone in PicG(X)R.

(3) Apply the Poisson formula to obtain a representation

Z(G, s) =
∫
(G(A)/G(F )K)∗

Ĥ(s;χ)dχ,

where the integral is over the group of unitary characters χ of G(A) which are trivial
on G(F )K and dχ is an appropriate Haar measure.

(4) Compute the Fourier transforms Ĥv at almost all nonarchimedean places and
find estimates at the remaining places.
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(5) Prove a meromorphic continuation of Z(G, s) and identify the poles.
(6) Apply a Tauberian theorem.

2. Algebraic tori

For simplicity, we will always assume that T is a split algebraic torus over a number
field F , that is, a connected reductive group isomorphic to Gdm,F , where Gm,F :=
Spec(F [x, x−1]).

2.1. Adelization

Notations 2.1.1 (Fields). — Let F be a number field and disc(F ) the discriminant of
F (over Q). The set of places of F will be denoted by Val(F ). We shall write v|∞ if
v is archimedean and v � ∞ if v is nonarchimedean. For any place v of F we denote
by Fv the completion of F at v and by Ov the ring of v-adic integers (for v � ∞). Let
qv be the cardinality of the residue field Fv of Fv for nonarchimedean valuations and
put qv = e for archimedean valuations. The local absolute value | · |v on Fv is the
multiplier of the Haar measure, i.e., d(axv) = |a|vdxv for some Haar measure dxv on
Fv. We denote by A = AF =

∏′
v Fv the adele ring of F .

Notations 2.1.2 (Groups). — Let G be a connected reductive algebraic group defined
over a number field F . Denote by G(A) the adelic points of G and by

G1(A) :=
{
g ∈ G(A)

∣∣ ∏
v∈Val(F )

|m(gv)|v = 1 ∀m ∈ ĜF
}

the kernel of F -rational characters ĜF of G.

Notations 2.1.3 (Tori). — Denote byM = T̂F = Zd the group of F -rational characters
of T and by N = Hom(M,Z) the dual group (as customary in toric geometry). Put
Mv := M (resp. Nv := N) for nonarchimedean valuations and Mv := M ⊗ R for
archimedean valuations.

Write Kv ⊂ T(Fv) for the maximal compact subgroup of T(Fv) (after fixing an
integral model for T we have Kv = T(Ov) for almost all v).

Choose a Haar measure dµ =
∏
v dµv on T(A) normalized by vol(Kv) = 1 (for

nonarchimedean v the induced measure on T(Fv)/Kv is the discrete measure).

The adelic picture of a split torus T is as follows:
• T(A)/T1(A) � (Gm(A)/G1

m(A))d � Rd;
• T1(A)/T(F ) = (G1

m(A)/Gm(F ))d is compact;
• K =

∏
v∈Val(F )Kv;

• T1(A)/T(F )K is a product of a finite group and a connected compact abelian
group;

• K ∩T(F ) is a finite group of torsion elements.
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