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TORIC MORI THEORY AND FANO MANIFOLDS

by

Jaros�law A. Wísniewski

Abstract. — The following are the notes to five lectures on toric Mori theory and Fano
manifolds given during the school on toric geometry which took place in Grenoble in
Summer of 2000.
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These are the notes to five lectures which I gave during the school on toric geometry
in Grenoble in the Summer of 2000. The first week of the three week long school was
meant to introduce the basics of toric geometry to the students while the other two
weeks were devoted to advanced topics. Therefore the idea of the present notes is
to give a brief and self-contained introduction to an advanced and broad topic to
students who have just learned the fundamentals of toric language.
I claim no originality on the contents of these notes. Actually, they are primarily

based on Miles Reid article [11]. An exposition of Mori theory in general can be found
in [5]. Moreover Lecture 3 uses ideas of [12] while Lecture 5 is related to [3].

All varieties are algebraic and defined over C.
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0. Short introduction: Minimal Model Program

In the course of the first week’s lectures you have learned basics of toric geometry.
You must have noticed that the theory is nice, clear and elegant, even too good to
be true. And, indeed, that’s right: toric varieties are very, very rare among algebraic
varieties, so don’t be confused: toric geometry is less than tip of the iceberg of alge-
braic geometry. Nevertheless it is very, very useful. Firstly because you can test your
theories and conjectures (wisely posed!) in the toric environment. Secondly, because,
as special as it is, toric geometry gives a very close insight in the local structure of
varieties, where “local” is in analytic or formal neighborhood sense (not Zariski!). I’ll
try to illustrate these two principles in the course of my lectures.
We set for the classification of complex projective varieties of given dimension.

Our primary examples are complex curves (or Riemann surfaces). The contents of
the following table is referred to frequently when it comes to explaining principles of
classification theory which includes the apparent trichotomy.

Sphere with g handles: g = 0 g = 1 g � 2
Fundamental group: trivial Z2 2g generators
Curvature: positive zero negative
Holomorphic forms: none non-vanishing g independent
Holomorphic vector fields: 2 independent non-vanishing none
Canonical divisor KX : negative zero positive

I shall focus on the canonical divisor. Let me recall the following:

Definition. — Let X be a normal variety of dimension n, with X0 ⊂ X denoting its
smooth part. The canonical divisor KX is a Weil divisor obtained by extending the
divisor KX0 associated to the sheaf of holomorphic n-forms ΩnX0

= Λn(ΩX0 ).

We will need moreover the following.

Definition. — Let L be a Q-Cartier divisor on a normal variety X , that is, a multiple
mL, with m ∈ Z is a Cartier divisor. We say that L is nef (numerically effective)
if the intersection L · C = (1/m) degC(mL|C) is non-negative for any compact curve
C ⊂ X .

Apart from the curve case we have the following observation in dimension 2 which
is an easy corollary to Enriques-Kodaira classification of smooth complex surfaces:
each projective surface can be modified birationally – using blow-ups and blow-downs
– either to a P1 bundle over a curve, or to a surface with nef canonical divisor.
Based on this (very roughly presented) evidence one can state

Minimal Model Conjecture. — Any projective normal variety X is birationally equiv-
alent to a normal projective variety X ′ which satisfies one of the following:
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(i) X ′ admits Fano-Mori fibration ϕ : X ′ → Y , that is: ϕ is a projective morphism
with connected fibers, ϕ∗OX′ = OY , onto a normal variety Y , with dimY < dimX ′,
and −KX′ ample on fibers of ϕ, or
(ii) X ′ is minimal which means that KX′ is nef (such X ′ is then called a minimal

model of X).

At this point I am rather vague about possible singularities of the involved varieties,
however we have to assume that KX′ is Q-Cartier at least.

Here is an idea how to approach the Conjecture:

(1) Locate curves which have negative intersection with canonical divisor, under-
stand their position in homology of X : use Cone Theorem [Mori, Kawamata].
(2) Eliminate some of these curves by contracting them to points: use Contraction

Theorem [Kawamata, Shokurov]; chances are that we shall get Fano-Mori fibration, or
we get a birational morphism to a simpler variety; unfortunately the birational map
may also lead to a variety with very bad singularities (case of small contractions), so
that the canonical divisor is not Q-Cartier.
(3) If the contraction leads to bad singularities use birational surgery (flips) to

replace curves which have negative intersection withKX by curves which have positive
intersection with KX : this should be possible by Flip Conjecture (proved by Mori in
dimension 3).

Although the Minimal Model Conjecture is void for toric varieties (they are ratio-
nal, hence birational to a Fano-Mori fibration), they can be used effectively to test
steps of the Program and possibly to describe local (in the analytic, or formal sense)
geometry of non-minimal varieties. In the course of the present lectures I will review
the main ideas of Minimal Model Program in the situation of toric varieties.

Let me recall toric notation.

M � Zn lattice of characters of a torus T � (C∗)n

N = Hom(M,Z) lattice of 1-dimensional subgroups of T
MR and NR vector spaces in which they live
〈v1, . . . , vk〉 convex cone spanned on vectors v1, . . . , vk
conv(v1, . . . , vk) (affine) convex hull of points v1, . . . , vk
X = X(∆) toric variety associated to a fan ∆ in NR

∆(k) the set of k dimensional cones in ∆
V (σ) ⊂ X(∆) stratum (= closure of the orbit) associated to a cone σ ∈ ∆
Moreover, I will frequently confuse rays in ∆(1) with primitive elements from N

generating them: for a ray ρ ∈ ∆(1) I will always consider the (unique) primitive
element e ∈ N ∩ ρ.

We usually assume that fans are non-degenerate, that is any cone σ ∈ ∆ is strictly
convex: σ ∩ −σ = 0. Now I shall consider a slightly more general situation. Let

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



252 J.A. WIŚNIEWSKI

V ⊂ NR be a rational vector subspace, then I call ∆∗ a fan with vertex V if it
satisfies the usual conditions of a fan with strict convexity of cones replaced by

∀σ ∈ ∆∗ : σ ∩ −σ = V

The star ∗ in ∆∗ will indicate that the fan ∆∗ has possibly non-trivial vertex. (The
fans in the usual sense have vertices equal to {0}.)
If ∆∗ is a fan in NR with a vertex V then we can define a lattice N ′ = N/(N ∩V ),

so that N ′
R
= NR/V . Then the fan ∆∗ descends to a nondegenerate fan ∆∗/V in N ′

R

and X(∆∗/V ) is a toric variety of dimension n− dimV .
Let me recall that Γ is a sub-division of ∆ if |∆| = |Γ| and any cone in ∆ is a

union of cones from Γ. If both fans are non-degenerate then this defines a birational
morphism X(Γ) → X(∆). If a fan ∆∗ with a vertex V has a sub-division to a non-
degenerate fan Γ then we have a morphism X(Γ)→ X(∆∗/V ), general fiber of which
is of dimension dimV .

1. Cone Theorem

First, let me recall basic facts about the intersection on toric varieties. We start
with a complete algebraic variety X . Let N1(X) ⊂ H2(X,R) and N1(X) ⊂ H2(X,R)
be the R-linear subspaces spanned by, respectively, cohomology and homology classes
of, respectively, Cartier divisors and holomorphic curves on X . The class of a curve
C in N1(X) will be denoted by [C].
The intersection of cycles and cocycles restricts to N1(X)×N1(X) and provides a

non-degenerate pairing. Thus we can identify any space in question with the dual of
its pairing partner.
The following definition describes a convenient class of varieties.

Definition. — A normal variety X is called Q-factorial if some multiple of any Weil
divisor is a Cartier divisor.

For toric varieties we have a clear description of Q factoriality.

Proposition. — A toric variety X = X(∆) is Q-factorial if and only if the fan ∆ is
simplicial, that is all the cones in ∆ are simplicial.

Note that if X = X(∆) is Q-factorial then for any ρi ∈ ∆(1) the Weil divisor V (ρi)
is Q-Cartier. Let R∆(1) be an (abstract) real vector space in which vectors called ẽi,
with ei primitive in ρi ∈ ∆(1), form an orthonormal basis. We have the following
exact sequences of vector spaces, dual each to the other,

0 −→ MR −→ R∆(1) −→ N1(X) −→ 0

0 −→ N1(X) −→ R∆(1) −→ NR −→ 0
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with arrows in the first sequence defined as MR � m �→
∑

ei(m) · ẽi and ẽi �→ V (ei)
while the maps in the second sequence are as follows N1(X) � Z �→

∑
(Z · V (ρi)) · ẽi

and ẽi �→ ei.

Corollary. — If X = X(∆) is a Q-factorial toric variety defined by a fan ∆ then
N1(X) can be interpreted as the space of linear relations between primitive vectors ei
in rays ρi ∈ ∆(1).

Now, for an arbitrary varietyX , we consider the following cones in the linear spaces
defined above: the cone of curves (called also the cone of effective 1-cycles, or Mori
cone) NE(X) ⊂ N1(X) and the cone of nef divisors P = P(X) ⊂ N1(X); they are
R�0-spanned by, respectively, the classes of curves and numerically effective divisors.
Note that P and NE (the closure of NE) are — by their very definition — dual each
to the other in the sense of the intersection pairing of N1(X) and N1(X). If X is
projective then, by Kleiman criterion of ampleness, the cone NE(X) is strictly convex.

Let me explain one of the starting points of the Program: Mori’s move–bend–and–
break argument. In toric case this is particularly explicit: if X is a complete toric
variety then every effective cycle on X is numerically equivalent to a positive linear
combination of some 1-dimensional strata of the big torus action.
Let C ⊂ X(∆) be an irreducible curve. Suppose that C is contained in a stratum

V (σ) which is of the smallest dimension among the strata containing C. If dimV (σ) =
1 then there is nothing to be done, otherwise we want to deform C to a union of curves
belonging to lower-dimensional strata. We may assume — possibly by passing to a
smaller dimensional toric variety — that V (σ) = X(∆) which means that the general
point of C is contained in the open orbit of X(∆). If dimX(∆) = 2 then we note that
fixed points of the action of T on the linear system |C| are associated to combination
of 1-dimensional strata of X(∆), hence we are done in this case.
Now, let dimX(∆) > 2 and C ⊂ X be an irreducible curve. Let λ ∈ N be general

and consider the action C∗×X(∆)→ X(∆) of the 1-parameter group coming from λ,
we denote it (t, x) �→ tλ ·x. We may assume that the action has only a finite number of
fixed points. The action gives a morphism C∗×C → X(∆) and hence a rational map
C × C−→ X(∆). Blowing up the points of indeterminacy we resolve this map, that
is we find a surface S, a regular morphism ψ : S → X(∆) and a projection π : S → C,
such that ψ(π−1(1)) = C. Over C∗×C we have a natural C∗-action which lifts up to S
so that both ψ and π are C∗ equivariant. The (reducible) curve ψ(π−1(0)) is invariant
with respect to the action of λ, thus it is a union of closures of 1-dimensional orbits of
λ. Note that to make it numerically equivalent to the original C the components of
the curve ψ(π−1(0)) may have to be assigned multiplicities depending on the degree
of the map ψ on components of π−1(0); moreover, via the action of the group the
generic point of C is moved toward a fixed point of the action (to so-called sink, or
source, of the action on X(∆)) and thus the strict transform of {0} × C in S gets
contracted to this point.
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