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SEMIGROUP ALGEBRAS AND DISCRETE GEOMETRY

by

Winfried Bruns & Joseph Gubeladze

Abstract. — In these notes we study combinatorial and algebraic properties of affine
semigroups and their algebras: (1) the existence of unimodular Hilbert triangulations
and covers for normal affine semigroups, (2) the Cohen–Macaulay property and num-
ber of generators of divisorial ideals over normal semigroup algebras, and (3) graded
automorphisms, retractions and homomorphisms of polytopal semigroup algebras.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2. Affine and polytopal semigroup algebras . . . . . . . . . . . . . . . . . . . . . . . . 44
3. Covering and normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4. Divisorial linear algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5. From vector spaces to polytopal algebras . . . . . . . . . . . . . . . . . . . . . . 88
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1. Introduction

These notes, composed for the Summer School on Toric Geometry at Grenoble,
June/July 2000, contain a major part of the joint work of the authors.
In Section 3 we study a problem that clearly belongs to the area of discrete ge-

ometry or, more precisely, to the combinatorics of finitely generated rational cones
and their Hilbert bases. Our motivation in taking up this problem was the attempt
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to understand the normality of affine semigroups (and their algebras). The counter-
example we have found shows that some natural conjectures on the structure of Hilbert
bases do not hold, and that there is no hope to explain normality in terms of formally
stronger properties. Nevertheless several questions remain open: for example, the
positive results end in dimension 3, while the counter-examples live in dimension 6.
Section 4 can be viewed as an intermediate position between discrete geometry

and semigroup algebras. Its objects are the sets T of solutions of linear diophantine
systems of inequalities relative to the set S of solutions of the corresponding homo-
geneous systems: S is a normal semigroup and T can be viewed as a module over
it. After linearization by coefficients from a field, the vector space KT represents a
divisorial ideal over the normal domain K[S] (at least under some assumptions on
the system of inequalities). While certain invariants, like number of generators, can
be understood combinatorially as well as algebraically, others, like depth, make sense
only in the richer algebraic category.
The last part of the notes, Section 5, lives completely in the area of semigroup

algebras. More precisely, its objects, namely the homomorphisms of polytopal semi-
group algebras, can only be defined after the passage from semigroups to algebras.
But there remains the question to what extent the homomorphisms can forget the
combinatorial genesis of their domains and targets. As we will see, the automorphism
groups of polytopal algebras have a perfect description in terms of combinatorial ob-
jects, and to some extent this is still true for retractions of polytopal algebras. We
conclude the section with a conjecture about the structure of all homomorphisms of
polytopal semigroup algebras.
Polytopal semigroup algebras are derived from lattice polytopes by a natural con-

struction. While normal semigroup algebras in general, or rather their spectra, con-
stitute the affine charts of toric varieties, the polytopal semigroup algebras arise as
homogeneous coordinate rings of projective toric varieties. Several of our algebraic
results can therefore easily be translated into geometric theorems about embedded
projective toric varieties. Most notably this is the case for the description of the
automorphism groups.

During the preparation of the final version of these notes the second author was
generously supported by a Mercator visiting professorship of the Deutsche Forschungs-
gemeinschaft.

2. Affine and polytopal semigroup algebras

2.1. Affine semigroup algebras. — We use the following notation: Z, Q, R are
the additive groups of integral, rational, and real numbers, respectively; Z+, Q+ and
R+ denote the corresponding additive subsemigroups of non-negative numbers, and
N = {1, 2, . . .}.
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Affine semigroups. — An affine semigroup is a semigroup (always containing a neu-
tral element) which is finitely generated and can be embedded in Zn for some n ∈ N.
Groups isomorphic to Zn are called lattices in the following.
We write gp(S) for the group of differences of S, i. e. gp(S) is the smallest group (up

to isomorphism) which contains S. Thus every element x ∈ gp(S) can be presented
as s− t for some s, t ∈ S.
If S is contained in the lattice L as a subsemigroup, then x ∈ L is integral over S

if cx ∈ S for some c ∈ N, and the set of all such x is the integral closure SL of S in
L. Obviously SL is again a semigroup. As we shall see in Proposition 2.1.1, it is even
an affine semigroup, and can be described in geometric terms.
By a cone in a real vector space V = Rn we mean a subset C such that C is

closed under linear combinations with non-negative real coefficients. It is well-known
that a cone is finitely generated if and only if it is the intersection of finitely many
vector halfspaces. (Sometimes a set of the form z + C will also be called a cone.) If
C is generated by vectors with rational or, equivalently, integral components, then C
is called rational . This is the case if and only if the halfspaces can be described by
homogeneous linear inequalities with rational (or integral) coefficients.
This applies especially to the cone C(S) generated by S in the real vector space

L⊗ R:

(∗) C(S) = {x ∈ L⊗ R : σi(x) � 0, i = 1, . . . , s}

where the σi are linear forms on L⊗ R with integral coefficients.
We consider a single halfspace

Hi = {x ∈ L⊗ R : σi(x) � 0}.

The semigroup L ∩Hi is isomorphic to Z+ ⊕ Zn−1 where n = rankL.
Note that the cone C(S) is essentially independent of L. The embedding S ⊂ L

induces an embedding gp(S) ⊂ L and next an embedding gp(S) ⊗ R ⊂ L ⊗ R.This
embedding induces an isomorphism of the cones C(S) formed with respect to gp(S)
and L.

Proposition 2.1.1

(a) (Gordan’s lemma) Let C ⊂ L ⊗ R be a finitely generated rational cone (i. e.
generated by finitely many vectors from L⊗Q). Then L∩C is an affine semigroup
and integrally closed in L.

(b) Let S be an affine subsemigroup of the lattice L. Then
(i) SL = L ∩ C(S);
(ii) there exist z1, . . . , zu ∈ SL such that SL =

⋃u
i=1 zi + S;

(iii) SL is an affine semigroup.

Proof. — (a) Note that C is generated by finitely many elements x1, . . . , xm ∈ L. Let
x ∈ L∩C. Then x = a1x1+ · · ·+ amxm with non-negative rational ai. Set bi = �ai�.
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Then

(∗) x = (b1x1 + · · ·+ bmxm) + (r1x1 + · · ·+ rmxm), 0 � ri < 1.

The second summand lies in the intersection of L with a bounded subset of C. Thus
there are only finitely many choices for it. These elements together with x1, . . . , xm
generate L ∩ C. That L ∩ C is integrally closed in L is evident.
(b) Set C = C(S), and choose a system x1, . . . , xm of generators of S. Then every

x ∈ L ∩ C has a representation (∗). Multiplication by a common denominator of
r1, . . . , rm shows that x ∈ SL. On the other hand, L∩C is integrally closed by (a) so
that SL = L ∩C.
The elements y1, . . . , yu can now be chosen as the vectors r1x1 + · · · + rmxm ap-

pearing in (∗). There number is finite since they are all integral and contained in a
bounded subset of L ⊗ R. Together with x1, . . . , xm they certainly generate SL as a
semigroup.

See Subsection 4.4 for further results on the finite generation of semigroups.
Proposition 2.1.1 shows that integrally closed affine semigroups can also be defined

by finitely generated rational cones C: the semigroup S(C) = L ∩ C is affine and
integrally closed in L.
We introduce special terminology in the case in which L = gp(S). Then the integral

closure S = Sgp(S) is called the normalization, and S is normal if S = S. Clearly
the semigroups S(C) are normal, and conversely, every normal affine semigroup S has
such a representation, since S = S(C(S)) (in gp(S)).
Suppose that L = gp(S) and that representation (∗) of C(S) is irredundant. Then

the linear forms σi describe exactly the support hyperplanes of C(S), and are therefore
uniquely determined up to a multiple by a non-negative factor. We can choose them
to have coprime integral coefficients (with respect to e1 ⊗ 1, . . . , er ⊗ 1 for some basis
e1, . . . , er of gp(S)), and then the σi are uniquely determined. We call them the
support forms of S, and write

supp(S) = {σ1, . . . , σs}.
The map

σ : S −→ Zs, σ(x) = (σ1(x), . . . , σs(x)),

is obviously a homomorphism that can be extended to gp(S). Obviously Ker(σ) ∩ S

is the subgroup of S formed by its invertible elements: x,−x ∈ C(S) if and only if
σi(x) = 0 for all i.
Let Si = {x ∈ S : σ1(x) + · · ·+ σs(x) = i}. Clearly S =

⋃∞
i=0 Si, Si + Sj ⊂ Si+j

(and S0 = Ker(σ)∩S). Thus σ induces a grading on S for which the Si are the graded
components. If we want to emphasize the graded structure on S, then we call σ(x)
the total degree of x.
We call a semigroup S positive if 0 is the only invertible element in S. It is easily

seen that S is positive as well and that positivity is equivalent to the fact that C(S)
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is a pointed cone with apex 0. Thus σ is an injective map, inducing an embedding
S → Zs+. We call it the standard embedding of S (or S).
One should note that a positive affine semigroup S can even be embedded into

Zr+, r = rank(S), such that the image generates Zr+ as a group. We can assume that
gp(S) = Zr , and the dual cone

C(S)∗ = {ϕ ∈ (Rr)∗ : ϕ(x) � 0 for all x ∈ S}

contains r integral linear forms ϕ1, . . . , ϕr forming a basis of (Zr)∗ (a much stronger
claim will be proved in Subsection 3.3). Then the automorphism Φ = (ϕ1, . . . , ϕr) of
Zr yields the desired embedding. (The result is taken from [Gu2]; this paper discusses
many aspects of affine semigroups and their algebras not covered by our notes).
If S is positive, then the graded components Si are obviously finite. Moreover,

every element of S can be written as the sum of irreducible elements, as follows by
induction on the total degree. Since S is finitely generated, the set of irreducible
elements is also finite. It constitutes the Hilbert basis Hilb(S) of S; clearly Hilb(S) is
the uniquely determined minimal system of generators of S. For a cone C the Hilbert
basis of S(C) is denoted by Hilb(C) and called the Hilbert basis of C.
Especially for normal S the assumption that S is positive is not a severe restriction.

In this case S0 (notation as above) is the subgroup of invertible elements of S, and
the normality of S forces S0 to be a direct summand of S. Then the image S′ of S
under the natural epimorphism gp(S) → gp(S)/S0 is a positive normal semigroup.
Thus we have a splitting

S = S0 ⊕ S′.

Semigroup algebras. — Now letK be a field. Then we can form the semigroup algebra
K[S]. Since S is finitely generated as a semigroup, K[S] is finitely generated as a K-
algebra. When an embedding S → Zn is given, it induces an embedding K[S] →
K[Zn], and upon the choice of a basis in Zn, the algebra K[Zn] can be identified with
the Laurent polynomial ring K[X±1

1 , . . . , X±1
n ]. Under this identification, K[S] has

the monomial basis Xa, a ∈ S ⊂ Zn (where we use the notation Xa = Xa11 · · ·Xan
n ).

If we identify S with the semigroup K-basis of K[S], then there is a conflict of
notation: addition in the semigroup turns into multiplication in the ring. The only
way out would be to avoid this identification and always use the exponential notation
as in the previous paragraph. However, this is often cumbersome. We can only ask
the reader to always pay attention to the context.
It is now clear that affine semigroup algebras are nothing but subalgebras of

K[X±1
1 , . . . , X±1

n ] generated by finitely many monomials. Nevertheless the abstract
point of view has many advantages. When we consider the elements of S as members
of K[S], we will usually call them monomials . Products as with a ∈ K and s ∈ S are
called terms .
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