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GEOMETRIC IRREGULARITY AND D-MODULES

by

Yves Laurent

Abstract. — In the one dimensional case, J.-P. Ramis associated a Newton polygon

to an analytic differential operator. On this polygon may be read the irregularity of
the operator as well as its indices in various functional spaces. This result is here
generalized in the higher dimensional case. We define a Newton polygon and positive

microcharacteristic cycles. We get so a purely algebraic definition of the characteristic
cycle of the irregularity of a holonomic D-module.

Résumé(Irrégularité géométrique et D-modules). — En une variable, J.-P. Ramis

a associé à un opérateur différentiel analytique un polygone de Newton sur lequel

on peut lire l’irrégularité de cet opérateur ainsi que ses indices dans divers espaces
fonctionnels. On montre ici que ce résultat se généralise en dimension quelconque,

en définissant un polygone de Newton et des cycles microcaractéristiques positifs. En
particulier, on obtient une définition purement algébrique du cycle caractéristique de

l’irrégularité d’un D-module holonome.

Introduction

Let X be a complex manifold and DX the sheaf of differential operators with
holomorphic coefficients on X. Regular holonomic DX -modules are completely deter-
mined by the Riemann-Hilbert correspondence which is an equivalence of categories
between these modules and the perverse sheaves on X. In the non regular case, things
are much more complicated.

When the dimension of X is 1, the irregularity of an ordinary differential equation
is just a positive number. In higher dimensions, it may be understood as a perverse
sheaf as explained by Mebkhout in this Summer School or as a positive cycle as we
will see here. The relation between these two points of view is simply the fact that
the positive cycle is the characteristic cycle associated to the perverse sheaf. But in
fact, the two methods are completely different and give complementary results.
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As shown in dimension 1 by the results of Ramis, the irregularity itself is not
sufficient and we have to define a finite family of positive cycles, not only one. This
will be done by a method which is very similar to the definition of the characteristic
cycle. We will define a family of filtrations on the sheaf DX and from it we will get
the family of microcharacteristic cycles.

More precisely, if Y is a submanifold of X, the microcharacteristic cycles form a
finite family of lagrangian cycles on the space T ∗T ∗

Y X (cotangent to the conormal
space to Y ). They give a formula to compute the index of solutions of the DX -
module. In particular they compute the index of the sheaf of irregularity introduced
by Mebkhout.

But these cycles are not the good ones. Let us assume that Y is a hypersurface.
Then the sheaf of irregularity is a sheaf on Y and we need cycles on T ∗Y not on
T ∗T ∗

Y X. We show that to each lagrangian cycle on T ∗T ∗
Y X with a suitable action

of C∗ is associated a cycle on T ∗Y , called its irregularity, which has good properties
of homogeneity and positivity.

Applying this to DX -modules, we get positive cycles on T ∗Y which compute the in-
dex of the sheaf of irregularity and which vanishes if and only if M is regular along Y .
Moreover we show that these cycles are positive (positivity of the irregularity) and
that they are divisible by an integer (the denominator of the slope). These properties
generalize the properties of the irregularity in dimension one. In particular it gener-
alizes the positivity while the last property is the generalization of the fact that the
vertices of Newton Polygon have integral coordinates.

The detailed proofs are not given here but may be found in [5] and [6].

1. Ordinary differential equations

1.1. Newton Polygon (cf. Ramis [9]). — Let X be an open neighborhood of 0
in C and and P a differential operator on X:

P (t,Dt) =
∑

06j6m

pj(t)D
j
t

(with Dj
t = dj/dtj). Developing the pj functions in Taylor series near 0 we get:

P (t, Dt) =
∑

06j6m
i>0

pijt
iDj

t

For 0 6 j 6 m, we denote by kj the valuation of the function pj at 0 (i.e. the
highest power of t dividing pj) and we define:

Sj = { (λ, µ) ∈ R2 | λ 6 j, µ > kj − j }

Then S0(P ) is the union of the sets Sj and the Newton Polygon N0(P ) is the convex
hull of S0(P ). It is a convex subset of R2 (Figure 1).
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Figure 1. Newton Polygon

The operator P is said to be regular at 0, or to have “regular singularities” if the
Newton Polygon has only one vertex.

In the general case, this polygon is made of two half-lines (one vertical, one hori-
zontal) and of a finite number of segments. We denote by 0 < sN < · · · < s1 < +∞
the slopes of these segments and by 1 < r1 < · · · < rN < +∞ the rational numbers
given by (ri − 1)si = 1. The numbers ri are, by definition, the slopes of P or the
“algebraic slopes” of P (sometimes also called the critical indexes of P ).

The sum
∑

pijt
iτ j over (j, i− j) on the vertical half-line of the Newton Polygon is

nothing else than the function pm(t)τm where m is the order of P that is the principal
symbol of P . In a similar way, we define the the determining equation of P relative
to the index r as the restriction to t = 1 of the sum

∑
pijt

iτ j over (j, i − j) on the
segment of slope 1/(r − 1).

If r is not a slope of P , the corresponding determining equation is monomial,
otherwise it is a polynomial function of τ . The Newton Polygon is determined up to
a translation by the list of the degrees and valuations of the determining equations.

1.2. The algebraic case. — If all the coefficients of P are polynomial in t, we may
define a “negative part” of the Newton Polygon. Keeping the previous notations, we
denote by dj the degree of pj and replace the sets Sj by the two families:

S′j = { (λ, µ) ∈ R2 | λ 6 j, µ = kj − j }(1.2.1)

S′′j = { (λ, µ) ∈ R2 | λ 6 j, µ = dj − j }(1.2.2)

We get a Newton Polygon with positive and negative slopes (Figure 2).

1.3. Formal power series. — When P is regular at 0, Fuchs theorem says that
all formal power series which are solutions of the equation Pu = 0 are convergent.
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Figure 2. Second Newton Polygon

In [7], Malgrange has defined the irregularity of P as

Irr(P ) = χ(P, C[[t]])− χ(P, C{t})

where C[[t]] is the ring of formal power series and C{t} the ring of convergent series.
Let us recall that if P is an operator on a C-vector space F , P has finite index if

the kernel and the cokernel of P are finite dimensional C-vector spaces and the index
χ(P, F ) of P is:

χ(P, F ) = dimC Ker(P )− dimC Coker(P )

Malgrange proved that the irregularity is equal to the height between the higher
and the lower vertex of the Newton Polygon of P (with the definition of section 1.1).
It is thus a positive number which vanishes if and only if P is regular.

Ramis [9] improved this results using the rings C[[t]]r of Gevrey formal powers. A
formal power series u(t) =

∑
k>0 uktk is an element of C[[t]]r if and only if:

Fr[u](t) :=
∑
k>0

uk
tk

(k!)r−1

is convergent.

Theorem 1.3.1(Ramis [9])

(1) The operator P has a finite index on C[[t]]r for any r > 1.
(2) If u is a formal power series solution of the equation Pu = 0, it belongs to one

of the spaces C[[t]]r where r is a slope of P and the convergence radius of Fr[u] is
equal to the inverse of the modulus of one of the roots of the corresponding determining
equation.

(3) The index χ(P, C[[t]]r), as a function of r, is constant outside of the points r

which are slopes of P . Its jump at one of these points is equal to the height of the
segment of slope 1/(r − 1) of the Newton Polygon of P .
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1.4. Holomorphic microfunctions. — The previous result may be stated and
proved in other families of functions. We will consider in particular the family of
holomorphic microfunctions with support in {0} which is easier to generalize in higher
dimensional case as we shall see later.

If U is a neighborhood of 0 in C the quotient O(U − {0}) /O(U) does not depend
on U , it is denoted by B∞

{0}|C. The subspace generated by meromorphic functions
at 0 is denoted by B{0}|C.

The space B∞
{0}|C operates on germs of holomorphic functions at 0 by the Cauchy

formula. If f is a holomorphic function on a neighborhood U of 0 and if u ∈ B∞
{0}|C

is represented by a function ϕ(t) on U −{0}, we choose a path γ in U −{0} such that
the index of 0 is 1, e.g. a small circle centered at 0 and we set:

〈u, f〉 =
∫

γ

ϕ(t)f(t)dt

In this way, the class of the function 1
2iπ

1
t is identified to the Dirac operator δ :

f 7→ f(0) and the function

Φk(t) =
(−1)k+1

2iπ

k!
tk+1

to the k-th derivative δ(k)(t). This shows that an element of B∞
{0}|C is written in a

unique way:
u(t) =

∑
k∈N

akδ(k)(t)

where ak is a sequence of complex numbers satisfying:

∀ ε > 0, ∃Cε > 0, ∀ k > 0, |ak| 6 Cεε
k 1
k!

and such an u is an element of B{0}|C if and only if the sum is finite. B{0}|C is thus
the space of distributions with support {0} and B∞

{0}|C the space of hyperfunctions
with support {0}.

For r > 1, we define the spaces of ultradistributions B{0}|C{r} and B{0}|C(r). An
element u(t) =

∑
akδ(k)(t) of B∞

{0}|C is in B{0}|C{r} if the sequence ak satisfies:

∀ ε > 0, ∃Cε > 0, ∀ k > 0, |ak| 6 Cεε
k 1
(k!)r

and it is in B{0}|C(r) if

∃C > 0, ∀ k > 0, |ak| 6 Ck+1 1
(k!)r

The spaces C[[t]]r et B{0}|C{r} carry natural topologies for which they are topo-
logically duals and the theorem 1.3.1 may be translated to B{0}|C{r}.

Theorem 1.4.1(Ramis [9])

(1) The operator P has a finite index on B{0}|C{r} and B{0}|C(r) for any r > 1.
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