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EXPLICIT CALCULATIONS
IN RINGS OF DIFFERENTIAL OPERATORS

by

Francisco J. Castro-Jiménez & Michel Granger

Abstract. — We use the notion of a standard basis to study algebras of linear dif-

ferential operators and finite type modules over these algebras. We consider the
polynomial and the holomorphic cases as well as the formal case.
Our aim is to demonstrate how to calculate classical invariants of germs of coherent

(left) modules over the sheaf D of linear differential operators over Cn. The main
invariants we deal with are: the characteristic variety, its dimension and the multi-
plicity of this variety at a point of the cotangent space.
In the final chapter we shall study more refined invariants of D-modules linked to the

question of irregularity: The slopes of a D-module along a smooth hypersurface of
the base space.

Résumé(Calculs explicites dans l’anneau des opérateurs différentiels). — Dans ce cours

on développe la notion de base standard, en vue d’étudier les algèbres d’opérateurs
différentiels linéaires et les modules de type fini sur ces algèbres. On considère le

cas des coefficients polynomiaux, des coefficients holomorphes ainsi que le cas des

algèbres d’opérateurs à coefficients formels.
Notre but est de montrer comment les bases standards permettent de calculer certains

invariants classiques des germes de modules (à gauche) cohérents sur le faisceaux

D des opérateurs différentiels linéaires sur Cn. Les principaux invariants que nous
examinons sont : la variété caractéristique, sa dimension et sa multiplicité en un

point du fibré cotangent.
Dans le dernier chapitre nous étudions des invariants plus fins des D-modules qui

sont reliés aux questions d’irrégularité : les pentes d’un D-module, le long d’une

hypersurface lisse.
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Introduction

The purpose of these notes is to make an account of explicit methods, using the no-
tion of a standard basis, which could be used in studying algebras of linear differential
operators and finite type modules over these algebras. We consider in parallel each
of the following cases: coefficients in a ring of polynomials k[x1, . . . , xn] for the Weyl
algebra An(k), in the ring of germs of holomorphic functions at 0 ∈ Cn for Dn, or in
the ring of formal power series for D̂n. We denote R any of these rings of operators
and B the corresponding commutative ring of coefficients.

Our aim is to demonstrate how to calculate classical invariants of germs of coherent
(left) modules over the sheaf D of linear differential operators over Cn. In practice we
shall look at finite type modules over Dn or D̂n. The main invariants we are dealing
with are: the characteristic variety, and the multiplicity of this variety at a point of the
cotangent space. See [25] and [19] for an introduction to the theory of D-modules
and for the definition of the characteristic variety, of its dimension and and of its
multiplicity. In the last chapter we shall study more refined invariants of R-modules
linked to the question of irregularity: The slopes of a Dn-module or an An(k)-module
along a smooth hypersurface of the base space. In these notes we deal mainly with
the case of monogenic modules M = R/I with I a (left) ideal of R. We provide an
algorithm to build standard bases of I and in the context of chapter II these bases
yield a special kind of system of generators for which the module of relations is easy to
describe. There is a straightforward generalisation for the case M = Rp/N involving
a submodule N of Rp. Then continuing the process of building standard bases for
submodules we can thus obtain a (locally) free resolution of M . The techniques used
are the notion of privileged exponents with respect to an ordering and a theorem of
division. They were introduced by H.Hironaka (cf. [26] or [1]). In the polynomial
case the notion of a standard basis was developed by Buchberger under the name of
a Gröbner basis in [13] where he also gives an algorithm for its calculation.

The commutative case is treated in chapter I, where we recall the notions of a
privileged exponent of a polynomial or a power series with respect to a convenient
ordering, the definition of a standard basis and the algorithm for calculating it, which
is the Buchberger’s algorithm in the polynomial case. We also draw attention to the
elegant proof in the convergent case taken from Hauser and Muller (cf. [20].) We finish
by giving some applications in commutative algebra such as calculating multiplicities,
syzygies, and the intersections of ideals.

In chapter II, we consider division processes in algebras of operators which are
compatible with a filtration which may either be the filtration by the order of operators
or in the particular case of An(k), the Bernstein filtration by the total order. At the
same time, for the sake of completeness we treat a weighted homogeneous version
of these filtrations. Using a compatible ordering on monomials we again develop a
division algorithm and an algorithm for the construction of a standard basis. These
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algorithms are very similar to those developed in chapter I, since in fact a division by
a family of operators {P1, . . . , Pr}, or by a standard basis of an ideal I induces the
same object via the principal symbols in the commutative associated graded rings.
The references for these results are [11] and [14]. Let us also notice that it is only in
the case of k[x1, . . . , xr] or An(k) that the suitable orderings used in chapters I and II
are well orderings and therefore that the algorithms are effective. In the power series
case they depend on formal or convergent processes in the local rings of series.

In chapter III we give an algorithm for the calculation of the slopes of a coherent
R-module along a smooth hypersurface Y of kn or Cn in the neighbourhood of a
point of Y . The material is essentially taken from our work with A.Assi [2] where
however only the case of An(k) is considered.

The notion of a slope of a coherent D-module M was introduced by Y. Laurent
under the name of a critical index. He considers, in the more general context of
microdifferential operators a family of filtrations Lr = pF + qV (with r a rational
number such that 0 6 r = p/q 6 +∞), which is an interpolation between the filtration
by the order F and the V -filtration of Malgrange and Kashiwara (cf. [22]). The critical
indices are those for which the Lr-characteristic variety of M is not bihomogeneous
with respect to F and V . Laurent proved in loc. cit. the finiteness of the number
of slopes and then C.Sabbah and F.Castro proved the same result in [30] by using a
local flattener. In [28] Z.Mebkhout introduced the notion of a transcendental slope of
a holonomic D-module M , as being a jump in the Gevrey filtration Irr(r)Y (M ) of the
irregularity sheaf IrrY (M ). The irregularity sheaf is the complex of solutions of M

with values in the quotient of the formal completion along Y of the structural sheaf O,
by O itself. By the main result of [28], it is a perverse sheaf, and Irr(r)Y (M ) is the sub-
perverse sheaf of solutions in formal series of Gevrey type r along Y . In [23] Laurent
and Z.Mebkhout proved that the transcendental slopes of an holonomic D-module
are equal to the slopes in the sense of Laurent called algebraic slopes. The analogue
in dimension one is Malgrange’s paper [27] for the perversity of the irregularity sheaf
and Ramis’s paper [29] for the theorem of the comparison of slopes.

In chapter III, we recall the principle of the algorithm of calculation of the algebraic
slopes of an R-module that we developed in [2] and we give some supplementary
information. Here the additional difficulty is that the linear form Lr which yields
the similarly called filtration now possesses a negative coefficient in the variable x1.
Although we can still speak of privileged exponents and standard bases, the standard
bases are no longer systems of generators of the ideal I which we consider but only
induce a standard basis of the graded associated ideal. A more serious consequence
of non-positivity, is that the straightforward division algorithm does not work inside
finite order operators. The way to solve this problem is to homogenize the operators
in R[t] with respect to the order filtration or, in the case of An(k), with respect to the
Bernstein filtration. We notice in chapter III, following a remark made by L.Narváez
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[16] that we can simplify the original proof in [2] by considering on An[t] a different
structure as a Rees ring. Another improvement to [2] lies in the distinction between
the slopes in the sense of Laurent and the values of r for which the ideal I gives a
non-bihomogeneous graded ideal grLr

(I). We call those r, the idealistic slopes of I. In
[2] we considered only this set of slopes and proved its finiteness; this paper however
already contains the hard part of the algorithm of the calculation of algebraic slopes.
Let us end this introduction by pointing out two other extensions of the original
material of our paper [2]. First we make the same algorithm work for the rings of
operators Dn, or D̂n. Secondly we give some significant examples of the calculations
of slopes: the slopes of the direct image of DCe

1/xk

by an immersion in C2, with
respect to a smooth curve Y tangent to the support. This example contains idealistic
slopes which end up not being algebraic slopes. Finally, we calculate the slopes of
DC2e1/(y

p−xq) along any line through the origin.

Added on March 21, 2003. — This paper was written in September 1996, as mate-
rial for a six hour course given in the CIMPA summer school “Differential Systems”
(Sevilla, September 1996). Consequently, the bibliography is outdated. Since then,
many papers have been published about the computational aspects in D-modules
theory. We have therefore decided to add, after the references, a complementary list
of recent publications on the subject.

1. Division theorems in polynomial rings and in power series rings

1.1. Let k be a field, with an arbitrary characteristic unless otherwise stated. Let n
be a positive integer . We denote by:

• k[X] = k[X1, . . . , Xn] the ring of polynomials with coefficients in k and variables
X1, . . . , Xn.

• k[[X]] = k[[X1, . . . , Xn]] the ring of formal power series with coefficients in k

and variables X1, . . . , Xn.
• k{X} = k{X1, . . . , Xn} the ring of convergent power series with coefficients in

k and variables X1, . . . , Xn, if k = R or C. (1)

If f ∈ k[[X]], f 6= 0, we write f =
∑
α∈Nn fαXα where fα ∈ k. If f ∈ k[X] f 6= 0,

then this sum is finite. The set N (f) = {α ∈ Nn | fα 6= 0} is called the Newton
diagram of the power series or of the polynomial f .

1.2. L-degree and L-valuation. — Let L : Qn → Q be a linear form with non
negative coefficients.

Definition 1.2.1. — Let 0 6= f ∈ k[X]. We define the L-degree of f (and we denote it
by degL(f)) as being max{L(α) | fα 6= 0}. We set degL(0) = −∞.

(1)Or, more generally, a complete valued field.
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Definition 1.2.2. — Let 0 6= f ∈ k[[X]]. We define the L-valuation of f (which we
denote by valL(f)) as being min{L(α) | fα 6= 0}. We set valL(0) = +∞.

We have degL(fg) = degL(f) + degL(g) if f, g ∈ k[X] and valL(fg) = valL(f) +
valL(g) if f, g ∈ k[[X]].

Definition 1.2.3. — Let 0 6= f ∈ k[[X]]. We call the sum inL(f) =
∑
L(α)=valL(f) fαXα

the L- initial form of the power series f (2). Let I be an ideal of k[[X]]. We call the
ideal of k[[X]] generated by {inL(f) | f ∈ I}, the initial ideal of I . We denote it by
InL(I) (or simply In(I))

Notation. — The following notation will be useful. If f =
∑
α fαXα is a power

series, we set inL,ν(f) =
∑
L(α)=ν fαXα. When no confusion can occur, we write

inν(f) instead of inL,ν(f). We have: f =
∑
ν inν(f).

Definition 1.2.4. — Let 0 6= f ∈ k[X]. We call the sum finL(f) =
∑
L(α)=degL(f) fαXα

the L-final form of the polynomial f . Let I be an ideal of k[X]. We call the ideal of
k[X] generated by {finL(f) | f ∈ I} the final ideal of I. We denote it by FinL(I) (or
simply by Fin(I)).

1.3. Orderings in Nn. — Let < be a total well ordering on Nn compatible with
sums (i.e. if α, β ∈ Nn and α < β then we have α + γ < β + γ for any γ ∈ Nn). Let
L : Qn → Q be a linear form with non negative coefficients . The relation <L, defined
by:

α <L β if and only if
{
L(α) < L(β)
or L(α) = L(β) and α < β

is a total well ordering on Nn compatible with sums.

1.4. The privileged exponent of a polynomial or of a power series. — The
notion of the privileged exponent of a power series is due to H.Hironaka. It was
introduced in [26] (see also [1], [10]). We fix, once and for all, a total well ordering
<, compatible with sums, in Nn. Let L : Qn → Q be a linear form as above.

Definition 1.4.1. — Let f =
∑
α fαXα ∈ k[X], f 6= 0. We call:

• The n-uple expL(f) = max<L
{α | fα 6= 0}, the L-privileged exponent of f

• The monomial mpL = fexpL(f)X
expL(f), the L-privileged monomial of f

Let f =
∑
α fαXα ∈ k[[X]], f 6= 0. We call:

• The n-uple expL(f) = min<L
{α | fα 6= 0}, the L-privileged exponent of f .

• The monomial mpL = fexpL(f)X
expL(f), the L-privileged monomial of f .

(2)If all the coefficients of L are positive, then the initial form of a power series is a polynomial.
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