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ASYMPTOTIC SOLUTIONS OF NON LINEAR WAVE

EQUATIONS AND POLARIZED NULL CONDITIONS

by

Yvonne Choquet-Bruhat

Dédié à la mémoire de Jean Leray,

un mathématicien exceptionnel et un grand homme.

Abstract. — The jump in generality made by Leray for the WKB type construction
of high frequency asymptotic solutions of linear partial differential equations has
allowed the treatment of arbitrary linear systems of partial differential equations.
It also permitted the extension to quasilinear systems, and the appearance of new
properties linked to the non linearities, in particular a distorsion of signals. The
non linearity of a differential system is also an obstruction to the existence of global
solutions of evolution problems. In the case of non linear wave equations on the
Minkowski spacetime of dimension 4 it has been discovered by Christodoulou and
Klainerman that a “null condition” satisfied by the non linearities leads to global
existence results. The equations of the fundamental field equations (standard model,
Einstein equations) are quasi linear second order partial differential equations, but
not well posed due to gauge invariance. We introduce a“polarized null condition”. We
show it is satisfied by the standard model, but not quite by the Einstein equations. We
construct for both systems asymptotic high frequency solutions with linear transport
law along the rays. In the case of Einstein equations the wave inflicts a“back reaction”
on the background metric.

Résumé(Conditions nulles polarisées). — La généralisation faite par Leray de la
méthode WKB pour la construction de solutions asymptotiques à haute fréquence
de systèmes arbitraires d’équations aux dérivées partielles linéaires a permis le trai-
tement de systémes quasilinéaires et l’apparition de propriétés nouvelles comme la
distorsion des signaux. La non linéarité est aussi une obstruction à l’existence de so-
lutions globales des systèmes d’évolution. On introduit une condition nulle polarisée,
généralisation de la condition nulle de Christodoulou-Klainerman à des systèmes mal
posés par suite de l’invariance de jauge. On montre qu’elle conduit à une équation de
transport linéaire le long des rayons d’une solution asymptotique. Elle est satisfaite
par le modèle standard, mais un terme résiduel dans le cas des équations d’Einstein
conduit à une « réaction en retour » sur la métrique de base.
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1. Introduction

Leray [11], and G̊arding Kotake Leray [7] have brought a fundamental improvement

to the WKB construction of high frequency asymptotic solutions of linear partial

differential equations as functions of the form u = veiωϕ, with v a slowly varying

amplitude, ω a large parameter and ϕ a scalar function called the phase. The method

had be extended by Lax [10] to the construction of asymptotic solutions of first order

linear systems as formal series

u = eiωϕ(v0 +
1

ω
v1 + · · · ).

The jump in generality made by Leray allowed the treatment of arbitrary linear sys-

tems of partial differential equations. It also permitted the extension to quasilinear

systems [2], and the appearance of new properties linked to the non linearities in some

sense similar to shocks(1), in particular a distorsion of signals. The non linearity of a

differential system is also an obstruction to the existence of global solutions of evolu-

tion problems. In the case of non linear wave equations on the Minkowski spacetime

of dimension 4 it has been discovered by Christodoulou [6] and Klainerman [8] that

a null condition satisfied by the non linearities leads to global existence results. The

equations of the fundamental field equations (standard model, Einstein equations)

are quasi linear second order partial differential equations, but not well posed due to

gauge invariance. We introduce a polarized“null condition”. We show it is satisfied by

the standard model, but not quite by the Einstein equations. We construct for both

these systems asymptotic high frequency solutions with linear transport law along the

rays. In the case of Einstein equations the wave inflicts a “back reaction” [4] on the

background metric, as was already noticed in[3].

2. The GKL linear theory

2.1. Linear systems. — We change slightly the notations of GKL to give it the

geometrical aspects that it does possess. We write a linear differential system on a

smooth pseudo riemannian manifold V under the form

L(x,D)u = b(x)

with x a point of V of local coordinates xα, D the covariant derivative and u a field

on V . The system reads in local coordinates and index notation

(2.1) LAB(x,D)uB ≡
∑

16|a|6mB−nA

LAB,a(x)D
auB = bA(x)

(1)See for instance [1].
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where LAB a linear operator of order(2) mB − nA, summation over B and a is made

and we denote as usual:

a = α1, . . . , αn, Da = D
|a|
α1···αn

, |a| = α1 + · · · + αn.

We denote by H the principal part of L, represented in coordinates by the matrix of

the terms of order mB − nA in LAB (such a term may be absent):

HA
B (x,D)uB ≡

∑

|a|=mB−nA

HA
B,a(x)D

auB.

GKL call wave any solution of the homogeneous system (b ≡ 0) associated with L.

2.2. Asymptotic waves. — Let u(r)(x, ξ), r = 0, 1, . . . be a family of smooth fields

defined on V × R. Let ω be a real parameter (called frequency by analogy with the

WKB expansions). Let ϕ be a real function on V called phase. GKL consider a

formal series on V × R of the form

(2.2) uB(x, ξ) =
∞∑

r=0

ω−mB−ruB,r(x, ξ).

For any field v on V × R it holds that:

Dα{v(x, ξ)}ξ=ωϕ(x) = {Dαv(x, ξ) + ωϕαv
′(x, ξ)}ξ=ωϕ(x)

with

v′ ≡
∂v

∂ξ
, ϕα ≡

∂ϕ

∂xα
.

Inserting this identity in the formal computation of the action of the linear operator L

on the formal series uB(x, ξ)ξ=ωϕ(x) gives a formal series in powers of ω. The first

term reads (summation in a and B, but not in A which labels the equation):

(2.3)
∑

|a|=mB−nA

ω−nAHA
B,a(x)ϕ

a
[( ∂

∂ξ

)mB−nA

uB,0(x, ξ)
]

ξ=ωϕ(x)
.

Definition 1. — A GKL asymptotic wave is a formal series of the type (2.2) such that

the formal series obtained by its insertion in (2.1) is identically zero.

Neglecting terms irrelevant in the treatment obtained by nA integrations with

respect to ξ of each equation, the annulation of the term (2.3) is deduced from the

equation

∑

|a|=mB−nA

HA
B,a(x)ϕ

aũB,0(x, ξ) = 0, ũB ≡
( ∂

∂ξ

)mB

uB,0.

(2)It can be shown that any linear system can be written under this form without modifying its

characteristic polynomial. The numbers m and n are called Leray - Volevic indices.
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A necessary and sufficient condition for these equations to have a solution

ũ(0)(x, ξ) 6≡ 0 is the vanishing of the following determinant:

(2.4) ∆(ϕ) ≡ Det
( ∑

|a|=mB−nA

HA
B,a(x)ϕ

a
)

= 0,

i.e. that Dϕ be a solution of the characteristic (eikonal) equation of the operator L.

The phase ϕ being so chosen the first term u(0) of the asymptotic wave must be

such that ũ(0) belongs to the kernel of the linear homogeneous system:

(2.5)
∑

|a|=mB−nA

HA
B,a(x)ϕ

aũB,0(x, ξ) = 0.

hence, supposing that the dimension of this kernel is 1 (simple characteristic), uB,0

must be of the form

ũB,0 = U(x, ξ)hB(x)

with h a particular solution of the system (2.5), depending only on x, and U a scalar

function on V × R.

GKL show then that U must satisfy a linear propagation equation along the rays of

the phase ϕ by writing the next term in the expansion, coefficient of ω−nA−1. Indeed

the vanishing of this term reads (after nA integrations with respect to ξ, âi means

that αi has been suppressed from the sequence a)

∑

|a|=mB−nA

{
HA
B,a(x)ϕ

aũB,1(x, ξ) +HA
B,bai

(x)ϕbai

( ∂

∂ξ

)mB−1

Dαi
uB,0(x, ξ)

}

+
∑

|a|=mB−nA−1

L1,A
B,aϕ

a
( ∂

∂ξ

)mB−1

uB,0(x, ξ) = 0.

(2.6)

Since the determinant (2.4) is zero this equation can have a solution ũ(1) only if the

right hand side is orthogonal to the kernel hT (x) of the transposed linear system.

Replacing (∂/∂ξ)
mB−1

uB,0 by Û(x, ξ)h(x), with Û a primitive of U with respect to

ξ leads to an ordinary first order differential system for Û :

(2.7) hTA(x){HA
B,bai

(x)ϕbaiDαi
[(Û(x, ξ)hB(x)]+

∑

|a|=mB−nA−1

L1,A
B,aϕ

aÛ(x, ξ)hB(x)} = 0.

The identity

hTA(x)HA
B,bai

(x)ϕbaiDαi
hB(x) ≡ Dαi

∆(ϕ)

shows that the system is a propagation system for Û along the rays of the phase ϕ,

bicharacteristics of the operator L.

When U is determined, solution of (2.7), the second term u(1) is determined, up

to a solution U (1)(x, ξ)h(x), by solving the linear equation (2.6), and integration with

respect to ξ.

GKL show that an analogous procedure can be applied to annul the following terms

in the expansion, and a formal asymptotic series can be constructed, through always
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linear systems and integration. Such an asymptotic series give approximate solutions

to any order in ω, under smoothness assumptions of the coefficients.

2.3. Quasilinear systems. — The GKL construction has been extended to quasi-

linear first order systems in [2] by using a Taylor expansion of the coefficients in a

neighbourhood of a solution (background). The equation for U contains then deriva-

tives along the rays of the background and derivatives with respect to ξ. It leads to

“dispersions of signals” if the system does not satisfy the Boillat - Lax exceptionnality

condition. Due to the non linearity it is in general possible to obtain asymptotic

approximate solutions of the given system only by truncating the series at first order

in ω.

In the next sections we will consider quasilinear second order systems, with charac-

teristic determinant possibly identically zero, and apply the results to some physical

fields.

3. Quasilinear second order systems

3.1. Definitions. — We consider quasilinear second order systems with unknown

a set of tensor fields u on a C∞ manifold V . We do not write an explicit dependence

in x, though it may exist. The system reads:

(3.1) F (u,Du,D2u) ≡ G(u,Du) ·D2u+ f(u,Du) = 0.

where D is the covariant derivative in some given pseudo riemannian smooth metric

on V .

In index notations, with u ≡ (uA), A = 1, . . . , N , and xα local coordinates on V

the system reads:

FA(u,Du,D2u) ≡ GA,αβB (u,Du)D2
αβu

B + fA(u,Du)) = 0.

The system is said to be quasi diagonal if

GA,αβB (u,Du) ≡ gαβ(u,Du)δAB

with δAB the Kronecker delta. The fundamental field equations (Yang Mills, Einstein)

are not quasidiagonal if a particular gauge is not chosen.

3.2. Asymptotic solutions

3.2.1. Definitions. — A high frequency wave on V is a tensor field of the type

(3.2) u(x) = u(x) + ω−1{v(x, ξ)}ξ=ωϕ(x)

with u a tensor field on V , called background, v a tensor field of the same type as u,

but depending on a real parameter ξ ∈ R, ω a real parameter (“frequency”), and ϕ a

real function (phase).
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