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OPTIMAL RESULTS FOR THE TWO DIMENSIONAL

NAVIER-STOKES EQUATIONS WITH LOWER

REGULARITY ON THE DATA

by

Magnus Fontes & Eero Saksman

Abstract. — We establish existence and uniqueness of solutions in the anisotropic
Sobolev space H

1,1/2 to the two dimensional Navier-Stokes equations with data in
H

−1,−1/2. Our results give a new elementary proof for and extend some of recent

results of G. Grubb.

Résumé(Résultats optimaux pour les équations de Navier-Stokes endimension 2 avec des
données initiales peu régulières)

On établit l’existence et l’unicité des solutions dans l’espace de Sobolev anisotrope
H

1,1/2 pour les équations de Navier-Stokes en dimension 2 avec des données dans
H

−1,−1/2. Nos résultats donnent une preuve élémentaire nouvelle de résultats récents
de G. Grubb, tout en les complétant.

1. Introduction

Working with divergence free vectorfields, the Navier-Stokes equations take the

form

(1) ut − ∆xu + (u · ∇)u = f.

In two space dimensions it is known, since the pioneering works by J.Leray [LE],

O.A.Ladyzhenskaya [L1], [L2],[L3] and J.L.Lions and G.Prodi [LP], that under

suitable boundary conditions, (1) has a unique solution u ∈ L2(R, H1) for f ∈
L2(R, H−1).

Later on these results have been complemented in various ways. In a recent inter-

esting paper [G] G.Grubb gives general existence and uniqueness theorems for the

Navier-Stokes equations in scales of Lp-Sobolev, Bessel potential and Besov spaces,
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using fairly complicated pseudo differential operator techniques. In two space dimen-

sions with zero initial data her results include that under suitable conditions, given

a source term f ∈ H−1,−1/2 there exists a unique solution u ∈ H1,1/2. However, in

order to obtain existence it is assumed in [G] that the data is small enough in norm.

In the present note we give an elementary proof of the existence and uniqueness in

the case of f ∈ H−1,−1/2 and u ∈ H1,1/2, without assuming smallness on the data.

Our approach is in the spirit of the seminal work by J.Leray which appeared in Acta

Mathematica in 1934, and it is based on the method of [F1], which turns out to be

adaptable also to this situation. We refer to Theorem 1 below for the precise statement

of our result. The main improvement in our result, compared to previously known

results, is the regularity gain of the extra half derivative in time for the solution, and

at the same time the corresponding wider range of possible irregularities for the source

term.

Additional motivation for reconsidering the case f ∈ H−1,−1/2 is provided by

the fact that the corresponding result is optimal in a certain sense. Namely, the

solution and the source spaces are in complete duality and, moreover, the difference

in the smoothness corresponds exactly to the order of the non-linear operator in the

respective variables.

An advantage of our approach is that it is completely elementary and self contained.

Moreover, it appears to be possible to generalize it to certain situations, where other

methods probably fail. For example our argument goes through unchanged if we

replace the Laplacian in (1) with a uniformly elliptic linear operator having measurable

coefficients (see the remark at the end of the paper).

We briefly mention some recent related results on the two-dimensional case. The

papers of H. Amann [A] and [A1] apply interpolation arguments and semigroup meth-

ods to consider data with strong irregularity in space, but nonnegative smoothness in

time. The paper [MS1] of J.Mattingly and Y.Sinai uses direct estimates on Fourier

series to reprove and extend previous results in the case of very high regularity in

space. As we are concerned with low regularity for the data in time, it is of interest

here to observe that Brickmont, Kupiainen and Lefevre [BKL1] use the method of

[MS1] to treat a very specific situation, where the smoothness of the source term cor-

responds to that of the white noise process, which barely fails to be locally H−1/2 in

time (see also [BKL2], [MS2] and [KS] in this connection). We refer to [G], [MS1],

[FT], [A], [A1], [L3] and [T] and their references for further results.

The structure of the proof (and the note) is as follows: In the first section we

consider the linearized operator and prove that it yields an isomorphism between the

right spaces. To this end we apply simple Fourier analysis in connection with the

Hilbert transform and the half-derivative operator; the conclusion is obtained by an

application of the Lax-Milgram lemma. In the second section we first verify a suitable

a priori estimate for the solution, which is based on a simple non-homogeneous Sobolev
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imbedding theorem (see Lemma 3). The existence of a solution in the non-linear case

is now deduced from a simple finite dimensional approximation combined with an

application of the theory of the Brouwer mapping degree. In turn, the proof of the

uniqueness follows the classical lines.

2. The linear case

In the linear case there is no restriction on the space dimension. Let Ω be an open,

bounded and connected set in R
n, let Q = Ω × R and let

(2) H1,1/2(Q, Rn) :=
{

u ∈ L2(Q, Rn);
∂

1/2
+ u

∂t1/2
,

∂u

∂xi
∈ L2(Q, Rn) for 1 6 i 6 n

}

.

Here the half-derivative ∂
1/2
+ u/∂t1/2 corresponds to the Fourier-multiplier (iτ)1/2,

where τ is the Fourier frequency of t and we use the principal branch of the square root.

In a similar manner, the half-derivative ∂
1/2
− u/∂t1/2 corresponds to the multiplier

(−iτ)1/2. We obtain a Hilbert space with the norm

(

∫∫

Q

|u|2 +
∣

∣

∣

∂
1/2
+ u

∂t1/2

∣

∣

∣

2

+

n
∑

i=1

∣

∣

∣

∂u

∂xi

∣

∣

∣

2

dxdt
)1/2

.

By the Poincaré inequality, for elements in the closure of compactly supported func-

tions, this is equivalent to the norm

(3) ‖u‖H1,1/2 =
(

∫∫

Q

∣

∣

∣

∂
1/2
+ u

∂t1/2

∣

∣

∣

2

+
n

∑

i=1

∣

∣

∣

∂u

∂xi

∣

∣

∣

2

dxdt
)1/2

,

which we will use henceforth. Let V(Q, Rn) denote the space of divergence free (in

the space variables) D(Q, Rn)-testfunctions. Here D stands for infinitely differentiable

and compactly supported test functions.

We denote the closure in the H1,1/2(Q, Rn) norm of V(Q, Rn) by

(4) V
1,1/2
0 (Q, Rn) := V(Q, Rn).

The restriction of an element ξ in the dual space V
1,1/2
0 (Q, Rn)∗ to the space of

divergence free testfunctions V(Q, Rn) can be extended to a (non-unique) distribution

in H
1,1/2
0 (Q, Rn)∗.

Lemma 1. — Given ξ∈V
1,1/2
0 (Q, Rn)∗, there exist functions f0, f1, . . . , fn∈L2(Q, Rn)

such that

(5) 〈ξ, Φ〉 =
〈∂

1/2
+ f0

∂t1/2
+

n
∑

i=1

∂fi

∂xi
, Φ

〉

; Φ ∈ V(Q, Rn).

Furthermore, given ε > 0 we may always arrange so that ‖f0‖L2(Q,Rn) 6 ε (the

extension might then of course have a bigger norm).
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Proof. — The statement of the Lemma is a direct consequence of the Hahn-Banach

theorem, which yields the stated expression apart from the control on the L2-norm

of f0. For that end take a smooth test function g so that ‖f0−g‖L2(Q,Rn) 6 ε. Replace

f0 by f0−g and f1 by f1+

∫ x1

−∞

∂
1/2
+ g(s, x2, . . . , xn, t)

∂t1/2
ds in the stated expression (where

g is continued as zero outside of Q). This proves the Lemma since one easily verifies

that the last term belongs to L2(Q, Rn).

Let T0 : V
1,1/2
0 (Q, Rn) → V

1,1/2
0 (Q, Rn)∗ be the operator

(6) T0(u) =
∂u

∂t
− ∆u,

defined by

(7) 〈T0u, Φ〉 =

∫∫

Q

[(∂
1/2
+ u

∂t1/2
,
∂

1/2
− Φ

∂t1/2

)

+

n
∑

i=1

( ∂u

∂xi
,
∂Φ

∂xi

)]

dxdt ; Φ ∈ V
1,1/2
0 (Q, Rn).

One should here observe that (∂
1/2
− )∗ = ∂

1/2
+ and (∂

1/2
+ )2 = ∂, and thus (7) is obtained

from (6) by a formal integration by parts. The operator T0 is a well-defined continu-

ous linear operator since the above expression defines a continuous bilinear form on

V
1,1/2
0 (Q, Rn), as is seen by using the observation that ∂

1/2
− = h∂

1/2
+ , where h is the

Hilbert transform. Recall that the Hilbert transform corresponds to the unimodular

Fourier multiplier −i sgn(τ), and hence h is an isometry on L2.

Definition 1. — We say that a subspace of L2(Q, Rn) is invariant if it is invariant

under the Hilbert transform h in the time direction.

An invariant subspace will then be invariant also under the action of the opera-

tor H , defined by H(u) = 1/
√

2(u − h(u)). Observe that the paper [F1] introduced

the operator Hα, which for the choice α = 1/4 corresponds to our H .

The following simple result in the linear case forms the cornerstone of our later

treatment of the fully nonlinear equation. It corresponds to the simplest linear case

considered in [F1, Section 4.1], whence we leave for the reader some easy computa-

tional elements of the argument. Recall that an operator T : V → V ∗ is coercive if

there exists a constant C > 0 such that 〈Tu, u〉 > C‖u‖2
V for all u ∈ V .

Proposition 1. — Let V be a closed invariant subspace of V
1,1/2
0 (Q, Rn) and let f ∈

V
1,1/2
0 (Q, Rn)∗. Then there exists a unique uV (f) ∈ V such that

〈T0(uV ), Φ〉 = 〈f, Φ〉 for all Φ ∈ V.

Proof. — The operator H : V → V is obviously an isometry as it corresponds to a

unimodular Fourier multiplier in the time direction. In particular, it maps divergence

free distributions to divergence free distributions.

Recall next certain additional basic properties of the Hilbert transform h and the

half derivatives. First of all, h is an isometry on L2 with the property h ◦ h = −Id.
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Moreover, one has that
∫ ∞

−∞
(u, h(u))dt = 0 assuming that u ∈ L2. One also has that

∫ ∞

−∞(∂
1/2
+ u, ∂

1/2
− u)dt = 0 and

∫ ∞

−∞(∂
1/2
+ u, ∂

1/2
− h(u))dt = −

∫ ∞

−∞ |∂1/2
+ u|2dt assuming

that the integrals are well-defined. The latter equality is a consequence of the identity

∂
1/2
− h = −∂

1/2
+ . Using the above facts, a straightforward computation shows that the

operator H∗ ◦ T0 (defined by the natural bilinear form on V × V ) is a coercive linear

operator from V to V ∗. By the Lax-Milgram lemma it is an isomorphism, whence

the same is true for T0.

Finally, for the readers comfort we clarify the role of the restrictions of operators

in the above argument. Let us denote by PV the orthogonal projection on V in

V
1,1/2
0 (Q, Rn), so that PV ∗ = P ∗

V is the orthogonal projection on V ∗ (which is thus

identified with a closed subspace of (V
1,1/2
0 (Q, Rn))∗. In precise terms the above proof

yields that the operator (PV ∗H∗T0)|V : V → V ∗ is an isomorphism. However, since

H in an isometry on the whole space and H : V → V is bijective, the same is true for

H∗ : V ∗ → V ∗. As we have PV H = HPV , it also holds that PV ∗H∗ = H∗PV ∗ . We

may now deduce that (PV ∗T0)|V : V → V ∗ is an isomorphism, and this is equivalent

to the statement of the Theorem.

We explicitly state the special case

Corollary 1. — The operator T0 : V
1,1/2
0 (Q, Rn) → V

1,1/2
0 (Q, Rn)∗ is an isomorphism.

Concerning best approximations we have

Proposition 2. — Let V ⊂ W be two closed invariant subspaces in V
1,1/2
0 (Q, Rn), let

f ∈ V
1,1/2
0 (Q, Rn)∗ and let uV (f) ∈ V , uW (f) ∈ W be the corresponding solutions

from Proposition 1. Then

(8) ‖uV − uW ‖H1,1/2 6 2‖Φ− uW ‖H1,1/2 for all Φ ∈ V.

Proof. — From

(9) 〈T0(uV − uW ), H(uV − uW + uW − Φ)〉 = 0 ; Φ ∈ V,

one computes as in the proof of Proposition 1 to obtain the inequality

a2 + b2
6 2(ac + bd)

with

a2 =

∫∫

Q

∣

∣

∣

∣

∂
1/2
+ (uV − uW )

∂t1/2

∣

∣

∣

∣

2

dxdt, b2 =

∫∫

Q

∣

∣

∣

∣

∂(uV − uW )

∂xi

∣

∣

∣

∣

2

dxdt,

c2 =

∫∫

Q

∣

∣

∣

∣

∂
1/2
+ (uW − Φ)

∂t1/2

∣

∣

∣

∣

2

dxdt, and d2 =

∫∫

Q

∣

∣

∣

∣

∂(uW − Φ)

∂xi

∣

∣

∣

∣

2

dxdt,

The result is now a consequence of the Cauchy-Schwarz inequality.

Lemma 2. — There exists a sequence V1⊂V2⊂V3⊂ . . . of finite dimensional (closed)

invariant subspaces of V
1,1/2
0 (Q, Rn) such that (∪∞

i=1Vi) ∩ D(Q, Rn) = V
1,1/2
0 (Q, Rn).
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