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Abstract. — An elliptic plane is a complex projective plane V equipped with an
elliptic structure E in the sense of Gromov (generalization of an almost complex
structure), which is tamed by the standard symplectic form. The space V ∗ of surfaces
of degree 1 tangent to E (E-lines) is again a complex projective plane. We define on
V ∗ a structure of elliptic plane E∗, such that to each E-curve one can associate its
dual in V ∗, which is an E∗-curve. Also, the bidual (V ∗∗, E∗∗) is naturally isomorphic
to (V, E).

Résumé(Plans elliptiques duaux). — Un plan elliptique est un plan projectif complexe
équipé d’une structure elliptique E au sens de Gromov (généralisation d’une struc-
ture quasi-complexe), qui est positive par rapport à la forme symplectique standard.
L’espace V ∗ des surfaces de degré un tangentes à E (E-droites) est de nouveau un
plan projectif complexe. Nous définissons sur V ∗ une structure de plan elliptique E∗,
telle qu’à toute E-courbe on peut associer sa duale dans V ∗, qui est une E∗-courbe.
En outre, le bidual (V ∗∗, E∗∗) est naturellement isomorphe à (V, E).

Introduction

Let V be a smooth oriented 4-manifold, which is a rational homology CP2

(i.e. b2(V ) = 1), and let J be an almost complex structure on V which is homologi-

cally equivalent to the standard structure J0 on CP2. This means that there is an

isomorphism H∗(V ) → H∗(CP2) (rational coefficients) which is positive on H4 and

sends the Chern class c1(J) to c1(J0).

By definition, a J-line is a J-holomorphic curve (or J-curve) of degree 1. By the

positivity of intersections [McD2], it is an embedded sphere. We denote by V ∗ the

set of J-lines.

Now assume that J is tame, i.e. positive with respect to some symplectic form ω,

and also that V ∗ is nonempty. Then M. Gromov [G, 2.4.A] (cf. also [McD1]) has
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proved that by two distinct points x, y ∈ V there passes a unique J-line Lx,y ∈ V ∗,

depending smoothly on (x, y); also, for any given P ∈ GrJ
1 (TV ), the Grassmannian of

J-complex lines in TV , there exists a unique J-line LP ∈ V ∗ tangent to P . Further-

more, V is oriented diffeomorphic to CP2, ω is isomorphic to λω0 for some positive λ

so that J is homotopic to J0. Finally, V ∗ has a natural structure of compact oriented

4-manifold; although it is not explicitly stated in [G], the above properties of V ∗

imply that it is also oriented diffeomorphic to CP2.

Remark(J. Duval). — The dependence of LP upon P is continuous but not smooth.

However, when p is fixed, the map P ∈ GrJ
1 (TpV ) ≈ CP1 7→ LP has quasiconformal

components in any smooth chart of V ∗ given by intersections with two J-lines. For

more details, see [D, p. 4-5].

Later, Taubes [T1, T2] proved that the hypothesis that V ∗ be nonempty is un-

necessary, so that all the above results hold when J is tame. We shall call (V, J) an

almost complex projective plane.

Following [G, 2.4.E], these facts can be extended to the case of an elliptic structure

on V , i.e. one replaces GrJ
1 (TV ) by a suitable submanifold E of the Grassmannian of

oriented 2-planes G̃r2(TV ). Such a structure is associated to a twisted almost complex

structure J , which is a fibered map from TV to itself satisfying J2
v = −Id but such

that Jv is not necessarily linear.

An elliptic structure on V gives rise to a notion of E-curve, i.e. a surface S ⊂ V

(not necessarily embedded or immersed) whose tangent plane at every point is an

element of E (for the precise definitions, see section 2). It will be called tame if there

exists a symplectic form ω strictly positive on each P ∈ E.

In Gromov’s words, “all facts on J-curves extend to E-curves with an obvious

change of terminology”. In particular, let V be a rational homology CP2 equipped

with a tame elliptic structure E so that (V,E) is homologically equivalent to

(CP2,GrC

1 (TCP2)). Then one can define the space V ∗ of E-lines (E-curves of degree

1), and prove that all the above properties still hold (see section 3). In particular, V

and V ∗ are oriented diffeomorphic to CP2.

We shall call (V,E) with the above properties an elliptic projective plane. If C ⊂ V

is an E-curve, we define its dual C∗ ⊂ V ∗ by C∗ = {LTvC | v ∈ C}. A more precise

definition is given in section 4; one must require that no component of C be contained

in an E-line. The main new result of this paper is then the following.

Theorem. — Let (V,E) be an elliptic projective plane. Then there exists a unique

elliptic structure E∗ ⊂ G̃r2(TV
∗) on V ∗ with the following property: if C ⊂ V is an

E-curve which has no component contained in an E-line, then its dual C∗ ⊂ V ∗ is

an E∗-curve.

Furthermore, (V ∗, E∗) is again an elliptic projective plane. Finally, the bidual

(V ∗∗, E∗∗) can be canonically identified with (V,E), and C∗∗=C for every E-curve C.
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If E comes from an almost complex structure, one may wonder if this is also the

case for E∗, equivalently if the associated twisted almost complex structure J∗ is

linear on each fiber. Ben McKay has proved that this happens only if J is inte-

grable, i.e. isomorphic to the standard complex structure on CP2: see the end of the

Introduction.

The theorem above enables us to extend to J-curves in CP2 (for a tame J) some

classical results obtained from the theory of dual algebraic curves. For instance,

one immediately obtains the Plücker formulas, which restrict the possible sets of

singularities of J-curves.

Such results could be interesting for the symplectic isotopy problem for surfaces in

CP2 [Sik2, Sh]. And maybe also for the topology of a symplectic 4-manifold X , in

view of the result of D. Auroux [Aur] showing that X is a branched covering of CP2,

provided one could rule out negative cusps in the branch locus.

Acknowledgements and comments. — The main idea of this paper arose from discus-

sions with Stepan Orevkov, to whom I am very grateful.

This idea has also been discovered independently by Ben McKay, who made a very

deep study of elliptic structures (which may exist in any even dimension for V ) from

the point of view of exterior differential systems (see the references at the end and

also his web site). He uses the terminology “generalized Cauchy-Riemann equations”

and “generalized pseudoholomorphic curves”.

In particular, he proved that the submanifold E giving the structure is equipped

with a canonical almost complex structure. He also gave a positive answer to a

conjecture that I had made (see Section 5): if the elliptic structures on V and on its

dual V ∗ are both almost complex, then they are integrable (and thus V is isomorphic

to CP2 with the standard complex structure).

A first version of the present text was given in a preprint in August 2000 (École

Normale Supérieure de Lyon, UMPA, no 273), and on arXiv at the same time (math.

SG/0008234).

I thank the referee for the very careful reading of the text and the numerous

corrections.

Structure of the paper. — In section 1, we study elliptic surfaces in the Grassmannian

of oriented 2-planes of a 4-dimensional real vector space. In section 2 we study elliptic

structures on a 4-manifold, i.e. fibrations in elliptic surfaces in the tangent spaces. In

section 3 we define and study elliptic projective planes. Most of the statements and

all the ideas in these three sections are already in Gromov’s paper (see especially

[G, 2.4.E and 2.4.A]), except what regards singularities, where we give more precise

results in the vein of [McD2] and [MW].

In section 4 we prove the main result.
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In section 5 we give a special case of a more general general result of McKay: a

tame almost complex structure J on V = CP2 such that the elliptic structure on V ∗

is not almost complex (and thus V ∗ has no natural almost complex structure).

Finally in section 6 we prove the Plücker formulas for E-curves and in particular

for J-curves.

1. Elliptic surfaces in a Grassmannian

1.A. Definition. Associated complex lines. — Let T be an oriented real vector

space of dimension 4. We denote by G(T ) = G̃r2(T ) the Grassmannian of oriented

2-planes. Recall that for each P ∈ G(T ), the tangent plane TPG(T ) is canonically

identified with Hom(P, T/P ).

By definition, an elliptic surface in G(T ) is a smooth, closed, connected and em-

bedded surface X such that for every P ∈ X one has

TPX r {0} ⊂ Isom+(P, T/P ).

Lemma. — Let P1, P2, P3 be three oriented real planes (R-vector spaces of dimen-

sion 2), and

φ : P1 −→ Hom(P2, P3)

be a linear map such that φ(P1 r {0}) ⊂ Isom+(P2, P3). Then there exists unique

complex structures j1, j2, j3 on P1, P2, P3, making them complex lines, compatible

with the orientations, and such that the restriction φ : P1 → im(φ) is a complex

isomorphism onto IsomC(P2, P3), i.e.

(∗) φ(p1) ◦ j2 = j3 ◦ φ(p1), φ(j1p1) = φ(p1) ◦ j2 = j3 ◦ φ(p1).

Proof of the Lemma. — We prove the uniqueness first. Let j1, j2, j3 have the desired

properties. Let (p1
1, p

2
1) be an oriented base of P1, and let

u = φ(p1
1)

−1φ(p2
1) ∈ GL+(P2).

The hypothesis implies that u has eigenvalues a ± ib with b > 0. Replacing p2
1 by

(p2
1 − ap1

1)/b, we can obtain that these eigenvalues are ±i.
Note that u belongs to the plane P = φ(p1

1)
−1[im(φ)] ⊂ End(P2). This plane is

generated by Id and j2 = φ(p1
1)

−1φ(j1p
1
1), thus the fact that u has eigenvalues ±i

implies j2 = εu with ε = ±1.

Thus j1p
1
1 = εp2

1, and since (p1
1, j1p

1
1) and (p1

1, p
2
1) are both oriented bases of P1, we

have ε = 1, thus

j2 = φ(p1
1)

−1φ(p2
1),

j1(p
1
1) = p2

1, j1(p
2
1) = −p1

1,

j3 = φ(p2
1) ◦ φ(p1

1)
−1.

This proves the uniqueness.
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Conversely, it is easy to see that these formulas define complex structures compat-

ible with the orientations, and that (∗) is satisfied.

Applying this lemma, we obtain complex structures on TPX , P , T/P , making

them complex lines. We shall denote by

– jX,P the structure on TPX ,

– jP and j⊥P the structures on P and T/P .

By the integrability of almost complex structures on surfaces,X inherits a well-defined

structure of Riemann surface.

1.B. Elliptic surfaces and complex structures. — The first example of elliptic

surface is a Grassmannian GrJ
1 (T ) of complex J-lines for a positive complex structure

J on T .

We now prove that every elliptic surface is deformable to such a GrJ
1 (T ). More

precisely, denote by J (T ) the space of positive complex structures, and E(T ) the

space of elliptic surfaces. Then the embedding J (T ) → E(T ) just defined admits a

retraction by deformation. In particular, X is always diffeomorphic to CP1 and thus

biholomorphic to CP1.

To prove this, we fix a Euclidean metric on V and replace J (T ) by the subspace

J0(T ) of isometric structures, to which it retracts by deformation. The space of 2-

vectors Λ2T has a decomposition Λ2T = Λ2
+T ⊕ Λ2

−T into self-dual and antiself-dual

vectors. The Grassmannian G(T ) is identified with S2
+×S2

− ⊂ Λ2
+T×Λ2

−T by sending

a plane P to (
√

2(x∧ y)+,
√

2(x∧ y)−) where (x, y) is any positive orthonormal basis.

We denote by P = φ(u+, u−) the plane associated to (u+, u−). Identifying T/P with

P⊥, the canonical isomorphism

Tu+
S2

+ × Tu−
S2
− −→ Hom(P, P⊥)

sends (α+, α−) to A such that

A.ξ = ∗(ξ ∧ (α+ + α−)).

This can be seen by working in a unitary oriented basis of T , (e1, e2, e3, e4) such that

u± = 1√
2
(e1∧e2±e3∧e4). This leads to unitary oriented bases of Tu+

S2
+ and Tu−

S2
−:

v± =
1√
2
(e1 ∧ e3 ∓ e2 ∧ e4), w± =

1√
2
(e1 ∧ e4 ± e2 ∧ e3).

Still working in these bases, one gets

detA = −‖α+‖2 + ‖α−‖2,

(beware the signs!). Thus an elliptic structure is given by a surface X ⊂ S2
+ × S2

−
such that the projections p± : X → S2

± satisfy

– dp− is an isomorphism at all points of X ,

– ‖dp+ ◦ (dp−)−1‖ < 1 at all points of X .
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