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Abstract — An elliptic plane is a complex projective plane V' equipped with an
elliptic structure E in the sense of Gromov (generalization of an almost complex
structure), which is tamed by the standard symplectic form. The space V* of surfaces
of degree 1 tangent to E (E-lines) is again a complex projective plane. We define on
V* a structure of elliptic plane E*, such that to each E-curve one can associate its
dual in V*, which is an E*-curve. Also, the bidual (V**, E**) is naturally isomorphic
to (V, E).

RésuméPlans elliptiques duaux). — Un plan elliptique est un plan projectif complexe
équipé d’une structure elliptique E au sens de Gromov (généralisation d’une struc-
ture quasi-complexe), qui est positive par rapport & la forme symplectique standard.
L’espace V* des surfaces de degré un tangentes & E (E-droites) est de nouveau un
plan projectif complexe. Nous définissons sur V* une structure de plan elliptique E*,
telle qu’a toute E-courbe on peut associer sa duale dans V*| qui est une E*-courbe.
En outre, le bidual (V**, E**) est naturellement isomorphe & (V, E).

Introduction

Let V be a smooth oriented 4-manifold, which is a rational homology CP?
(i.e. bo(V)) = 1), and let J be an almost complex structure on V' which is homologi-
cally equivalent to the standard structure Jy on CP2. This means that there is an
isomorphism H*(V) — H*(CP?) (rational coefficients) which is positive on H* and
sends the Chern class ¢1(J) to ¢1(Jp).

By definition, a J-line is a J-holomorphic curve (or J-curve) of degree 1. By the
positivity of intersections [McD2], it is an embedded sphere. We denote by V* the
set of J-lines.

Now assume that J is tame, i.e. positive with respect to some symplectic form w,
and also that V* is nonempty. Then M. Gromov [G, 2.4.A] (¢f. also [McD1]) has
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proved that by two distinct points x,y € V there passes a unique J-line L, , € V*,
depending smoothly on (z,%); also, for any given P € Gry (TV), the Grassmannian of
J-complex lines in TV, there exists a unique J-line Lp € V* tangent to P. Further-
more, V is oriented diffeomorphic to CP?, w is isomorphic to Awg for some positive A
so that J is homotopic to Jy. Finally, V* has a natural structure of compact oriented
4-manifold; although it is not explicitly stated in [G], the above properties of V*
imply that it is also oriented diffeomorphic to CP2.

Remark(J. Duval). — The dependence of Lp upon P is continuous but not smooth.
However, when p is fixed, the map P € Gry(T,V) ~ CP! - Lp has quasiconformal
components in any smooth chart of V* given by intersections with two J-lines. For
more details, see [D, p. 4-5].

Later, Taubes [T1, T2] proved that the hypothesis that V* be nonempty is un-
necessary, so that all the above results hold when J is tame. We shall call (V,J) an
almost complex projective plane.

Following [G, 2.4.E], these facts can be extended to the case of an elliptic structure
on V, i.e. one replaces Gr{ (T'V) by a suitable submanifold E of the Grassmannian of
oriented 2-planes é\;Q(TV). Such a structure is associated to a twisted almost complex
structure J, which is a fibered map from TV to itself satisfying J? = —Id but such
that J, is not necessarily linear.

An elliptic structure on V' gives rise to a notion of E-curve, i.e. a surface S C V
(not necessarily embedded or immersed) whose tangent plane at every point is an
element of F (for the precise definitions, see section 2). It will be called tame if there
exists a symplectic form w strictly positive on each P € E.

In Gromov’s words, “all facts on J-curves extend to FE-curves with an obvious
change of terminology”. In particular, let V be a rational homology CP? equipped
with a tame elliptic structure E so that (V,E) is homologically equivalent to
(CP2, Gr&(T'CP?)). Then one can define the space V* of E-lines (E-curves of degree
1), and prove that all the above properties still hold (see section 3). In particular, V
and V* are oriented diffeomorphic to CP2.

We shall call (V, E') with the above properties an elliptic projective plane. If C C 'V
is an E-curve, we define its dual C* C V* by C* = {Ly,c | v € C}. A more precise
definition is given in section 4; one must require that no component of C' be contained
in an E-line. The main new result of this paper is then the following.

Theorem — Let (V, E) be an elliptic projective plane. Then there exists a unique
elliptic structure E* C &Q(TV*) on V* with the following property: if C C'V is an
E-curve which has no component contained in an E-line, then its dual C* C V* is
an E*-curve.

Furthermore, (V*, E*) is again an elliptic projective plane. Finally, the bidual
(V**, E**) can be canonically identified with (V, E), and C**=C for every E-curve C.

SEMINAIRES & CONGRES 9



DUAL ELLIPTIC PLANES 187

If F comes from an almost complex structure, one may wonder if this is also the
case for E*, equivalently if the associated twisted almost complex structure J* is
linear on each fiber. Ben McKay has proved that this happens only if J is inte-
grable, i.e. isomorphic to the standard complex structure on CP?: see the end of the
Introduction.

The theorem above enables us to extend to J-curves in CP? (for a tame .J) some
classical results obtained from the theory of dual algebraic curves. For instance,
one immediately obtains the Pliicker formulas, which restrict the possible sets of
singularities of J-curves.

Such results could be interesting for the symplectic isotopy problem for surfaces in
CP? [Sik2, Sh]. And maybe also for the topology of a symplectic 4-manifold X, in
view of the result of D. Auroux [Aur] showing that X is a branched covering of CP?,
provided one could rule out negative cusps in the branch locus.

Acknowledgements and comments. — The main idea of this paper arose from discus-
sions with Stepan Orevkov, to whom I am very grateful.

This idea has also been discovered independently by Ben McKay, who made a very
deep study of elliptic structures (which may exist in any even dimension for V') from
the point of view of exterior differential systems (see the references at the end and
also his web site). He uses the terminology “generalized Cauchy-Riemann equations”
and “generalized pseudoholomorphic curves”.

In particular, he proved that the submanifold FE giving the structure is equipped
with a canonical almost complex structure. He also gave a positive answer to a
conjecture that I had made (see Section 5): if the elliptic structures on V and on its
dual V* are both almost complex, then they are integrable (and thus V' is isomorphic
to CP? with the standard complex structure).

A first version of the present text was given in a preprint in August 2000 (Ecole
Normale Supérieure de Lyon, UMPA, n° 273), and on arXiv at the same time (math.
SG/0008234).

I thank the referee for the very careful reading of the text and the numerous
corrections.

Structure of the paper. — In section 1, we study elliptic surfaces in the Grassmannian
of oriented 2-planes of a 4-dimensional real vector space. In section 2 we study elliptic
structures on a 4-manifold, ¢.e. fibrations in elliptic surfaces in the tangent spaces. In
section 3 we define and study elliptic projective planes. Most of the statements and
all the ideas in these three sections are already in Gromov’s paper (see especially
[G, 2.4.E and 2.4.A]), except what regards singularities, where we give more precise
results in the vein of [McD2] and [MW].
In section 4 we prove the main result.
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In section 5 we give a special case of a more general general result of McKay: a
tame almost complex structure J on V = CP? such that the elliptic structure on V*
is not almost complex (and thus V* has no natural almost complex structure).

Finally in section 6 we prove the Pliicker formulas for E-curves and in particular
for J-curves.

1. Elliptic surfaces in a Grassmannian

1.A. Definition. Associated complex lines. — Let 7" be an oriented real vector
space of dimension 4. We denote by G(T') = Grs (T) the Grassmannian of oriented
2-planes. Recall that for each P € G(T), the tangent plane TpG(T') is canonically
identified with Hom(P, T/ P).

By definition, an elliptic surface in G(T) is a smooth, closed, connected and em-
bedded surface X such that for every P € X one has

TpX \ {0} C Isom4 (P, T/P).

Lemma — Let Py, P>, P; be three oriented real planes (R-vector spaces of dimen-
sion 2), and

¢:P1 —>Hom(P2,P3)
be a linear map such that ¢(Py ~ {0}) C Isomy (P2, Ps). Then there exists unique
complex structures ji, jo, j3 on Pi, Pa, Ps, making them complex lines, compatible
with the orientations, and such that the restriction ¢ : P — im(¢) is a complex
isomorphism onto Isomc(Pa, Ps), i.e.

(*) d(p1) o g2 = jzo dp(p1), #(jip1) = d(p1) 0 j2 = jz © d(p1).

Proof of the Lemma. — We prove the uniqueness first. Let ji, j2, j3 have the desired
properties. Let (p}, p?) be an oriented base of Py, and let

u=¢(p;) 'o(p7) € GLL(Py).

The hypothesis implies that u has eigenvalues a 4 ib with b > 0. Replacing p? by
(p? — api)/b, we can obtain that these eigenvalues are =i.

Note that u belongs to the plane P = ¢(pi)~![im(4)] C End(P2). This plane is
generated by Id and jo = é(p})~1é(j1p}), thus the fact that u has eigenvalues +i
implies jo = eu with ¢ = £1.

Thus j1p] = ep?, and since (pi, j1pi) and (pi, p?) are both oriented bases of P, we
have € = 1, thus

g2 = o(p1) " d(p),
1) =pi, 51 = -1,
js = o(p7) o p(p1) "

This proves the uniqueness.
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Conversely, it is easy to see that these formulas define complex structures compat-
ible with the orientations, and that (x) is satisfied. (|

Applying this lemma, we obtain complex structures on TpX, P, T/P, making
them complex lines. We shall denote by

— jx,p the structure on TpX,
— jp and j the structures on P and T/P.

By the integrability of almost complex structures on surfaces, X inherits a well-defined
structure of Riemann surface.

1.B. Elliptic surfaces and complex structures. — The first example of elliptic
surface is a Grassmannian Gry (T) of complex J-lines for a positive complex structure
JonT.

We now prove that every elliptic surface is deformable to such a Gry (T). More
precisely, denote by J(T') the space of positive complex structures, and E(T") the
space of elliptic surfaces. Then the embedding J(T) — £(T') just defined admits a
retraction by deformation. In particular, X is always diffeomorphic to CP! and thus
biholomorphic to CP!.

To prove this, we fix a Euclidean metric on V' and replace J(7T') by the subspace
Jo(T') of isometric structures, to which it retracts by deformation. The space of 2-
vectors A2T has a decomposition AT = A%rT @ A2 T into self-dual and antiself-dual
vectors. The Grassmannian G(T') is identified with 53 x S2 C AZT x A2 T by sending
a plane P to (vV2(x Ay)y,V2(z Ay)_) where (z,y) is any positive orthonormal basis.
We denote by P = ¢(u4,u_) the plane associated to (u4,u_). Identifying T/ P with
P+, the canonical isomorphism

T,,S% x T, S? — Hom(P, P*)
sends (a4, a_) to A such that
A =+(E N (as +a)).

This can be seen by working in a unitary oriented basis of T', (e1, e2, e3, e4) such that
Ug = \%(el NegEezAey). This leads to unitary oriented bases of T, , SJQr and T, S2:

1 1
vt = E(el NesFea Aey), wt = ﬁ(el Neygtes Aes).

Still working in these bases, one gets
det A = —lay|* + [la—]?,

(beware the signs!). Thus an elliptic structure is given by a surface X C S% x 2
such that the projections p+ : X — S7 satisfy

— dp_ is an isomorphism at all points of X,
— |ldp+ o (dp—)~1|| < 1 at all points of X.
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