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TOPOLOGICAL SUBSTITUTION
FOR THE APERIODIC RAUZY FRACTAL TILING

by Nicolas Bédaride, Arnaud Hilion & Timo Jolivet

Abstract. — We consider two families of planar self-similar tilings of different nature:
the tilings consisting of translated copies of the fractal sets defined by an iterated
function system, and the tilings obtained as a geometrical realization of a topological
substitution (an object of purely combinatorial nature, defined in [6]). We establish
a link between the two families in a specific case, by defining an explicit topological
substitution and by proving that it generates the same tilings as those associated with
the Tribonacci Rauzy fractal.

Résumé (Substitution topologique pour la pavage fractal apériodique de Rauzy). —
On considère deux familles de pavages auto-similaires de nature différente : ceux obte-
nus par translation de copies d’un ensemble fractal défini par un système de fonctions
itérées, et ceux obtenus comme la réalisation géométrique d’une substitution topolo-
gique (un objet purement combinatoire, défini dans [6]). On établit un lien entre les
deux familles dans un cas particulier, en définissant une substitution topologique ex-
plicitement puis en démontrant qu’elle engendre les mêmes pavages que ceux associés
au fractal Tribonacci de Rauzy.
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1. Introduction

1.1. Main result and motivation. — Self-similar tilings of the plane are char-
acterized by the existence of a common subdivision rule for each tile, such that
the tiling obtained by subdivising each tile is the same as the original one, up to
a contraction. These tilings have been introduced by Thurston [32] and they are
studied in several fields including dynamical systems and theoretical physics,
see [5]. A particular class of self-similar tilings arises from substitutions, which
are “inflation rules” describing how to replace a geometrical shape by a union
of other geometrical shapes (within a finite set of basic shapes). Among these,
an important class consists of the planar tilings by the so-called Rauzy fractals
associated with some one-dimensional substitutions. These fractals are used to
provide geometrical interpretations of substitution dynamical systems. They
also provide an interesting class of aperiodic self-similar tilings of the plane,
see [16, 8].

The aim of this article is to establish a formal link between two self-similar
tilings constructed from two different approaches:
• Using an iterated function system (IFS), that is, specifying the shapes

and the positions of the tiles with planar set equations (using contracting
linear maps), which define the tiles as unions of smaller copies of other
tiles. In particular, an IFS does make use of the Euclidean metric of the
plane.

• Using a topological substitution, that is, specifying which tiles are allowed
to be neighbors, and how the neighboring relations are transferred when
we “inflate” the tiles by substitution to construct the tiling. With this
kind of substitution, there is no use in anyway of a the Euclidean metric:
the tiles do not have a metric shape (they are just topological disks).

In other words, we tackle the following question:
Given a tiling defined by an IFS, is there a topological substitution
which generates an equivalent tiling? If yes, how can we construct
it? In other words, when is it possible to describe the geometry of
a self-similar tiling (geometrical constraints) by using a purely
combinatorial rule (combinatorial constraints) ?

In this article we answer this question for the tilings of the plane by translated
copies of the Rauzy fractals associated with the Tribonacci substitution (which
are defined by an IFS). We define a particular topological substitution σ (Fig-
ure 3.3, p. 588) and we prove that the Tribonacci fractal tiling Tfrac and the
tiling Ttop generated by the topological substitution are equivalent in a strong
way. More precisely:
• Associated with the Tribonacci substitution s : 1 7→ 12, 2 7→ 13, 3 7→ 1,

there is a dual substitution E (see Section 4.2) which acts on facets in R3.
Iteration of this dual substitution gives rise to a stepped surface Σstep (a
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surface which is a union of facets), that is included in the 1-neighborhood
of some (linear) plane P in R3. Projecting the stepped surface Σstep (and
its facets) on P gives rise to a tiling Tstep of P. It is known [2, 8] that
the tiling Tfrac is strongly related to a tiling Tstep.

• The topological substitution σ can be iterated on a tile C, giving rises
to a 2-dimensional CW-complex σ∞(C) homeomorphic to a plane, see
Section 3.2. However, this complex is not embedded a priori in a plane,
even if it turns out that σ∞(C) can be effectively realized as a tiling
Ttop of the plane, see Proposition 3.11. To locate a tile T in σ∞(C)
relatively to another one T ′, we build a vector (an “position”) ω0(T, T ′) ∈
Z3: by construction, this vector depends a priori on the choice of a
combinatorial path from T to T ′ in σ∞(C), and we have to prove that
in fact it is independent of the path, see Section 5.1.

• Since it is already explained in the literature how to relate Tfrac and Σstep,
and since we explain how Ttop is build from σ∞(C), the main result of
the paper is Theorem 5.16 that states an explicit formula which define
a bijection Ψ between tiles in σ∞(C) and facets in Σstep: we reproduce
it just below.

Theorem. — The map Ψ defined, for every tile T of σ∞(C), by:

(1.1) Ψ(T ) = [M3
s(ω0(T,C) + utype(T )), θ(type(T ))]∗

is a bijection from the set of tiles of σ∞(C) to the set of facets of Σstep.

The notation used to state this theorem will be introduced along the paper.
But we want to stress that the fact the formula (1.1) makes use of the position
map ω0 ensures that if two tiles T and T ′ are close in σ∞(C), then their images
Ψ(T ) and Ψ(T ′) will be close in Σstep. In fact, it is easy to convince oneself that
something like that should be true by having a look at Figure 1.1, where three
corresponding subsets of the tilings Ttop, Tfrac and Tstep are given.

Figure 1.1. The three tilings Ttop, Tfrac and Tstep (from left to right).

On Figure 1.1, it is also worth to notice that the underlying CW-complexes
of Ttop and Tstep are not the same. Indeed, the valence of a vertex in Ttop is
either 2 or 3, whereas the valence of a vertex in Tstep can be equal to 3, 4, 5 or
6. In that sense, the two tilings Tstep and Ttop are really different.
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We have chosen to present our results on a specific substitution rather than
in a general form because it makes presentation clearer and it avoids many
“artificial” technicalities. Moreover, we do not know what a general answer to
the above question may look like. However, we give some insight about this
general question in Section 6.

1.2. Comparison of some different notions of substitutions. — The word “sub-
stitution” is used in many different ways in the literature. The list below reviews
several such notions, going from the most geometrical one (IFS) to the most
combinatorial one (topological substitutions). Indeed, as observed by Peyrière
[26], having a combinatorial description of substitutive tiling turns out to be
very useful in many situations. This list is not exhaustive, it only contains the
notions of substitutions that we explicitly use in this article. See [18] for another
survey about geometrical substitutions.

One-dimensional symbolic substitutions. — These substitutions are used to
generated infinite one-dimensional words which are studied mostly for their
word-theoretical and dynamical properties. An example is the Tribonacci sub-
stitution 1 7→ 12, 2 7→ 13, 3 7→ 1 defined in Section 4.3. See [16] for a classical
reference. This is the only notion of the present list which is only symbolic (not
geometrical).

Self-affine substitutions (iterated function systems). — Also known as substi-
tution Delone sets [24], this notion is a particular class of iterated functions
systems, where it is required that the geometrical objects defined by the IFS
are compact sets which are the closure of their interior, in such a way that
tilings can be defined. See Proposition 4.5 for an example of such a definition
for the Tribonacci fractal.

Dual (or “generalized”) substitutions. — These substitutions, introduced in [4]
can be seen as a discrete version of self-affine substitutions. Instead of defining
fractal tilings in a purely geometrical way (like with IFS), these substitutions
act on unions of faces of unit cubes located at integer coordinates. We define
the associated fractal sets and tilings by iterating the dual substitution and
by taking a Hausdorff limit of the (renormalized) unions of unit cube faces.
The fact that we deal with unit cube faces allows us to exploit some fine com-
binatorial and topological properties of the resulting patterns. This provides
some powerful tools in the study of substitution dynamics and Rauzy fractal
topology. Dual substitutions are usually denoted by E∗1(σ), where σ is a one-
dimensional symbolic substitution, See [8, 30] for many references and results,
and Definition 4.2 for the particular example studied in this article.

Local substitution rules. — This notion has been used to tackle combinatorial
questions about substitution dynamics [22, 2, 3, 7] and have also been studied
in a more general context [14, 23]. Their aim is to get a “more combinatorial”
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version of dual substitutions. Instead of computing explicitely the coordinates
of the image of each unit cube face (like we do for dual substitutions), we give
some local rules (or concatenation rules) for “gluing together” the images of two
adjacent faces. The map defined in Figure 5.2, p. 601 is an example of such a
substitution (except that it is defined over topological tiles and not unit cube
faces).

Topological substitutions. — Introduced in [6], topological substitutions do not
make any use of geometry: the tiles are topological disks (with no Euclidean
shape), the boundaries of which have a simplicial structure (made of vertices
and edges). It is a notion less geometrically rigid than the previous ones. They
act on CW-complexes, and the “gluing rules” are more abstract and combi-
natorial than local substitution rules. A topological substitution generates a
CW-complex homeomorphic to the plane. If this complex can be geometrized
as a tiling of the plane, we say that the tiling is a topological substitutive
tiling. Topological substitutions allowed for instance to prove that there is no
substitutive primitive tiling of the hyperbolic plane, even though an explicit
example of a non-primitive topological substitution which generates a tiling of
the hyperbolic plane is given in [6].

In order to distinguish this notion of substitution used in the present article
from the other combinatorial notions discussed in this introduction, we use the
term topological substitution instead of combinatorial substitution

The examples of topological substitutions given in the present article (Fig-
ure 3.3 and Figure 6.1) are interesting because they provide new examples of
topological substitutive tilings, which can be realized as (substitutive) tilings
of the plane.

Other related notions. — There is another notion, elaborated by Fernique and
Ollinger [15] (and developped in details in the specific case of Tribonacci),
which lies between local substitution rules and topological substitutions. For
these so-called combinatorial substitutions, the Euclidean shape of the tiles is
specified, and the matching rules are stated in terms of colors associated with
some subintervals on the boundaries of the tiles and their images. We stress
that, in that case, the Euclidean geometry is used both to give the shape of the
tiles and to specify that two tiles with same shape differ with a translation of
the plane.

Purely combinatorial notions of substitutions have already been defined. For
instance, Priebe-Frank [17] introduced a very natural notion of (labeled) graph
substitutions. In the case of a substitutive tiling, this graph substitution has
to be understood as a substitution on the dual graph to the tiling. The main
issue with this formalism is that there is no a priori control on the planarity
of the graph obtained by iteration of the substitution, and thus in general the
limit graph obtained by iteration can not be the dual graph to any tiling of the
plane. Topological substitutions of [6] remedy this problem.
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