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Frédéric Mangolte

Abstract. – We survey recent results on real rational surfaces focusing on the links
between their topology and their birational geometry.

Résumé (Surfaces rationnelles réelles). – On survole les résultats récents sur les surfaces
rationnelles réelles en insistant plus particulièrement sur les liens entre leur topologie
et leur géométrie birationnelle.

1. Introduction

During the last decade (1), there were many progresses in the understanding of the
topology of real algebraic manifolds, above all in dimensions 2 and 3. Results on real
algebraic threefolds were addressed in the survey [46] with a particular emphasis on
Kollár’s results and conjectures concerning real uniruled and real rationally connected
threefolds, see [33], [27, 26], [14, 15], [47]. In the present paper, we will focus on real
rational surfaces and especially on their birational geometry. Thus the three next
sections are devoted to real rational surfaces; they are presented in a most elemen-
tary way. We state Commessatti’s and Nash-Tognoli’s famous theorems (Theorem 8
and Theorem 25). Among other things, we give a sketch of proof of the following
statements:

– Up to isomorphism, there is exactly one single real rational model of each nonori-
entable surface (Theorem 13);
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(1) With the exception of some classical references, only references over the past years from the
preceding “RAAG conference in Rennes,” which took place in 2001, are included.
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– The group of birational diffeomorphisms of a real rational surface is infinitely
transitive (Theorem 15);

– The group of birational diffeomorphisms of a real rational surface X is dense in
the group of C

∞-diffeomorphisms Diff(X(R)) (Theorem 27).

We conclude the paper with Section 5 devoted to a new line of research: the theory
of regulous functions and the geometry we are able to define with them.

Besides the progresses in the theory of real rational surfaces, the classification of
other real algebraic surfaces has considerably advanced during the last decade (see [32]
for a survey): topological types and deformation types of real Enriques surfaces [17],
deformation types of geometrically (2) rational surfaces [19], deformation types of real
ruled surfaces [58], topological types and deformation types of real bielliptic sur-
faces [13], topological types and deformation types of real elliptic surfaces [1, 6, 18].

The present survey is an expansion of the preprint written by Johannes Huis-
man [25] from which we have borrowed several parts.

Convention. – In this paper, a real algebraic surface (resp. real algebraic curve) is a
projective complex algebraic manifold of complex dimension 2 (resp. 1) endowed with
an anti-holomophic involution whose set of fixed points is called the real locus and
denoted by X(R). A real map is a complex map commuting with the involutions.
A topological surface is a real 2-dimensional C

∞-manifold. By our convention, a real
algebraic surface X is nonsingular; as a consequence, if nonempty, the real locus X(R)

gets a natural structure of a topological surface when endowed with the euclidean
topology. Furthermore X(R) is compact since X is projective.

Acknowledgments. – Thanks to Daniel Naie for sharing his picture of the real locus of
a blow-up, see Figure 1, to Jérémy Blanc for old references and the referee for useful
remarks.

2. Real rational surfaces

2.1. Examples of rational surfaces. – A real algebraic surface X is rational if it con-
tains a Zariski-dense subset real isomorphic to the affine plane A2. This is equivalent,
as we shall see below, to the fact that the function field of X is isomorphic to the field
of rational functions R(x, y). In the sequel, a rational real algebraic surface will be
called a real rational surface for short and by our general convention, always assumed
to be projective and nonsingular.

(2) See p. 12 before Theorem 17.

PANORAMAS & SYNTHÈSES 51



REAL RATIONAL SURFACES 3

Example 1. – 1. The real projective plane P2
x:y:z is rational. Indeed, each of the coor-

dinate charts U0 = {x 6= 0}, U1 = {y 6= 0}, U2 = {z 6= 0} is isomorphic to A2.
The real locus P2(R) endowed with the euclidean topology is the topological
real projective plane.

2. The product surface P1
x:y × P1

u:v is rational. Indeed, the product open subset
{x 6= 0} × {u 6= 0} is isomorphic to A2. The set of real points (P1 ×P1)(R) =

P1(R) × P1(R) is diffeomorphic to the 2-dimensional torus S1 × S1 where S1

denotes the unit circle in R2.
3. The quadric Q3,1 in the projective space P3

w:x:y:z given by the affine equation
x2 +y2 +z2 = 1 is rational. Indeed, for a real point P of Q3,1, denote by TPQ3,1

the real projective plane in P3 tangent to Q3,1 at P . Then the stereographic pro-
jection Q3,1 \TPQ3,1 → A2 is an isomorphism of real algebraic surfaces. For ex-
ample in the case P is the North pole N = [1 : 0 : 0 : 1], let πN : Q3,1 → P2

U :V :W

be the rational map given by

πN : [w : x : y : z] 99K [x : y : w − z] .

Then πN restricts to the stereographic projection from Q3,1 \ TNQ3,1 onto its
image πN (Q3,1 \ TNQ3,1) = {w 6= 0} ' A2.

(The inverse rational map π−1
N : P2 99K Q3,1 is given by

π−1
N : [x : y : z] 99K [x2 + y2 + z2 : 2xz : 2yz : x2 + y2 − z2]) .

The real locus Q3,1(R) is the unit sphere S2 in R3.

To produce more examples, we recall the construction of the blow-up which is
especially simple in the context of rational surfaces.

The blow-up B(0,0)A
2 of A2 at (0, 0) is the quadric hypersurface defined in A2×P1

by

B(0,0)A
2 = {((x, y), [u : v]) ∈ A2

x,y ×P1
u:v : uy = vx}.

The blow-up B[0:0:1]P
2 of P2 at P = [0 : 0 : 1] is the algebraic surface

B[0:0:1]P
2 = {([x : y : z], [u : v]) ∈ P2

x:y:z ×P1
u:v : uy − vx = 0}.

The open subset V0 = {((x, y), [u : v]) ∈ B(0,0)A
2 : u 6= 0} is Zariski-dense

in B(0,0)A
2 and the map ϕ : V0 → A2, ((x, y), [u : v]) 7→ (x, vu ) is an isomorphism.

Similarly, the open subset

Ũ2 = {([x : y : z], [u : v]) ∈ B[0:0:1]P
2 : z 6= 0, u 6= 0}

is Zariski-dense in B[0:0:1]P
2 and the map Ũ2 → U2 ' A2,

([x : y : z], [u : v]) 7→ [ux : v : uz]
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is an isomorphism. Thus B[0:0:1]P
2 is rational. Now remark that the map ϕ : V1 =

{v 6= 0} → A2, ((x, y), [u : v]) 7→ (x, uv ) is also an isomorphism and the sur-
face B(0,0)A

2 is thus covered by two open subsets, both isomorphic to A2.
We deduce that the surface B[0:0:1]P

2 is covered by the three open subsets
U0, U1, Ũ2 = B[0:0:1]U2 ' B(0,0)A

2 hence covered by four open subsets, both
isomorphic to A2. Up to affine transformation, we can define BPP2 for any P ∈ P2

and it is now clear that the surface BPP2 is covered by a finite number of open
subsets, each isomorphic to A2. The same is clearly true for P1 ×P1. It is also true
for Q3,1. Indeed, choose 3 distinct real points P1, P2, P3 of Q3,1, and denote the open
set Q3,1 \ TPi

Q3,1 by Ui, for i = 1, 2, 3. Since the common intersection of the three
projective tangent planes is a single point, that, moreover does not belong to Q3,1,
the subsets U1, U2, U3 constitute an open affine covering of Q3,1.

Let X be an algebraic surface and P be a real point of X. Assume that P admits
a neighborhood U isomorphic to A2 which is dense in X (by Corollary 12 below we
have in fact that if X is rational, any real point of X has this property), and define
the blow-up of X at P to be the real algebraic surface obtained from X \ {P} and
BPU by gluing them along their common open subset U \ {P}. Then BPU ' BPU0

is dense in BPX and contains a dense open subset isomorphic to U0 ' A2. At this
point, we admit that this construction does neither depend on the choice of U , nor
on the choice of the isomorphism between U and A2. See e.g., [55, §II.4.1] or [46,
Appendice A] for a detailed exposition.

We get:

Proposition 2. – Let X0 be one of the surfaces P2, P1 ×P1 or Q3,1. If

Xn
πn−→ Xn−1

πn−1−→ · · · π1−→ X0

is a sequence of blow-ups at real points, then Xn is a real rational surface.

Proof. – Indeed, from Example 1 and the comments above, any point P ∈ Xi admits
a neighborhood U isomorphic to A2 which is dense in Xi.

Let π : BPX → X be the blow-up of X at P . The curve EP = π−1{P} is the
exceptional curve of the blow-up. We say that BPX is the blow-up of X at P and
that X is obtained from BPX by the contraction of the curve EP .

Example 3. – Notice that if P is a real point of X, the resulting blown-up surface gets
an anti-holomorphic involution lifting the one of X. If P is not real, we can obtain
a real surface anyway by blowing up both P and P : let U be an open neighborhood
of P which is complex isomorphic to A2(C) and define BP,PX to be the result of the
gluing of X \ {P, P} with both BPU and BPU .
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