
SOCIÉTÉ MATHÉMATIQUE DE FRANCE
Publié avec le concours du Centre national de la recherche scientifique

Panoramas et Synthèses

Numéro 51

A survey on o-minimal structures

Jean-Philippe Rolin



Panoramas & Synthèses
51, 2017, p. 27–77

A SURVEY ON O-MINIMAL STRUCTURES

by

Jean-Philippe Rolin

Abstract. – We analyze some aspects of the theory of o-minimal structures, and its
applications to various contexts, from differential equations to diophantine geome-
try. In particular, we illustrate on various examples several analytic and geometric
methods involved in the proofs of o-minimality.

Résumé (Une synthèse des structures o-minimales). – Nous considérons divers aspects
de la théorie des structures o-minimales, et ses applications à différents domaines,
depuis les équations différentielles jusqu’à la géométrie diophantienne. En particulier,
nous illustrons plusieurs méthodes analytiques et géométriques développées dans les
preuves d’o-minimalité.

What are o-minimal structures, what is o-minimal geometry? In his course on
o-minimal geometry [8], M. Coste says that “the main feature of o-minimal structures
is that there are no “monsters” in such structures”. As an example of “monster,”
he mentions the closure of the graph Γ of the function x ÞÑ sin p1{xq for x ą 0,

which is connected, but not arcwise connected. One also observes that, because of the
oscillating nature of the set Γ, the intersection of Γ with the positive real axis has
infinitely many connected components. Roughly speaking, o-minimal structures are
intended to provide a setting for “tame geometry” in which such bad things cannot
happen.

Two examples of such tame geometries are well-known: the semialgebraic and the
subanalytic geometry. They both satisfy many finiteness properties. For example,
every semialgebraic set has finitely many connected components, which are semial-
gebraic as well. A careful examination of the proof of these properties shows that
they follow from a few simple axioms. These axioms have been identified by L. van
den Dries in 1984 [10], and collected under the terminology of theory of finite type.
During the same year, stimulated by van den Dries’ work, A. Pillay and C. Steinhorn
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extended this study using the terminology o-minimal theory [59]. The main problems
considered in this domain of research are the following:

1. What are the properties of the collections of sets which satisfy the axioms of
o-minimality?

2. Beside the semialgebraic and the subanalytic frameworks, are there many fam-
ilies of sets which satisfy these axioms?

3. What kind of applications can we expect from this study?

Our goal in this survey is to summarize several answers that have been given to these
questions.

Among the sources of o-minimal geometry, we can quote A. Tarski’s monograph
on the theory of the structure pR,`, ¨q [76]. This inspiration is followed by S. Lo-
jasiewicz’ work on semianalytic sets [44], as well as A. Gabrielov’s celebrated theorem
of the complement of a subanalytic set [24], and subsequently H. Hironaka’s rectilin-
earization of subanalytic sets [28]. It is also worth mentioning the title of the fifth
section of A. Grothendieck’s “Esquisse d’un programme”: Haro sur la topologie dite
“générale”, et réflexions heuristiques vers une topologie dite “modérée” (1) [26], which
gave rise to the terminology “tame geometry,” or “tame topology”.

This important topic, on the border between model theory and geometry, has been
the subject of an impressive body of literature. Several excellent surveys and books
are devoted to it. Let us mention van den Dries’ book [12], M. Coste’s monograph [8]
and C. Miller’s and van den Dries’ article [18]. We should also cite M. Shiota’s
book [70], which contains a theory close to o-minimality, namely the theory of X-sets
(see Remark 1.8), and contains also the proof of several nice results (see Section 3.7).

In Section 1 we recall the definition of an o-minimal structure from two points
of view: the geometric one, and the model-theoretic one. In Section 2, we give a
few explanations about the seminal works [10, 59]. The main classical properties of
o-minimal structures are listed in Section 3. Several examples of o-minimal structures
are described in Section 4. Section 5 is devoted to recent applications of o-minimality
in diophantine geometry. We give some details in Section 6 about the techniques
which have been employed in proving o-minimality. The last section 7 contains open
problems.

The author of these lines wishes to thank the referee for his careful reading and
many valuable comments.

1. Basic definitions

There are traditionally two ways to introduce o-minimality: the geometric one and
the model-theoretic one. We summarize both of them in this section.

(1) Denunciation of so-called “general” topology, and heuristic reflections towards a so-called “tame”
topology.
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1.1. The geometric point of view

Definition 1.1. – A structure expanding the real field R is a collection S “ pSnqnPN,
where each Sn is a set of subsets of the affine space Rn, satisfying the following
properties:

1. All algebraic subsets of Rn are in Sn.
2. For every n, Sn is a Boolean subalgebra of the powerset of Rn .
3. If A P Sm and B P Sn, then AˆB P Sm`n.
4. If p : Rn`1 Ñ Rn is the projection onto the first n coordinates and A P Sn`1,

then ppAq P Sn.

The elements of Sn pn P Nq are called the definable sets of the structure. In particular,
if F is a collection of functions f : Rm Ñ R, for various m P N (resp. of subsets of
Rm for various m P N), the structure RF generated by F (or the expansion of R by
the elements of F ) is the smallest structure expanding the real field which contains
the graphs of all functions in F (resp. all the elements of F if F is a collection of
sets).

Finally, a map f : A Ă Rn Ñ Rp is called definable if its graph is definable (which
implies that the domain A is a definable subset of Rn).

The notion of o-minimality is related to a specific property of the definable subsets
of R:

Definition 1.2. – A structure S is called o-minimal if the elements of S1 are all the
finite unions of singletons and intervals.

Actually, instead of the real field, in the definitions above we could have considered
any real closed field. But, since our goal is to insist on the applications of o-minimality
for which this degree of generality is not relevant (such as real analytic dynamical sys-
tems, quasianalytic algebras of C

8 real functions, diophantine geometry on complex
algebraic varieties), this more general point of view will not be developed in the next
sections.

The following notion plays an important role in o-minimality:

Definition 1.3. – A structure S is model complete if, in the above definition of defin-
able set, the operation of taking complements is superfluous.

Example 1.4. – The smallest o-minimal expansion of the real field is the structure RH
(or Ralg), whose elements are the semialgebraic subsets of the affine spaces Rn, n P N.
This is an immediate consequence of the celebrated “Tarski-Seidenberg theorem”
(which states that if p : Rn`1 Ñ Rn is the projection onto the first n coordinates
and A P Rn`1 is a semialgebraic set, then ppAq is semialgebraic), and the fact that
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the semialgebraic subsets of the real line are precisely the finite unions of points and
intervals (2).

The following definition generalizes the classical notions of semialgebraic or semi-
analytic sets:

Definition 1.5. – Given a collection F of functions as in Definition 1.1, a subset of
Rn of the form:

tx P Rn : P px, f1 pxq , . . . , fk pxqq “ 0u,

where P P R rX1, . . . , Xn, Y1, . . . , Yks and f1, . . . , fk belong to F , is called a F -set.

The next simple proposition is a frequently used in the proof of o-minimality (see
Section 6):

Proposition 1.6. – Consider a collection F of functions f : Rm Ñ R, for various m P

N such that:
(i) the structure RF is model complete;
(ii) every F -set has finitely many connected components.

Then RF is o-minimal.

Proof. – We actually prove that, given any definable set A Ď Rm, there exist n P N
and a F -set B Ď Rm`n such that A “ Πm pBq (where Πm is the projection onto
the first m coordinates), and hence has only finitely many connected components. We
proceed by an induction on the “complexity” of the definable sets.

1. Every semialgebraic set is obviously a F -set.
2. Let A Ď Rm and B Ď Rn be two projections of F -sets: there exist p, q P N,

two polynomials P in m ` p variables and Q in n ` q variables, and two collections
f1, . . . , fp and g1, . . . , gq of elements of F such that A “ Πm pSq and B “ Πn pT q,
with:

S “
 

px, yq P Rm`p : P px, y, f1 px, yq , . . . , fp px, yqq “ 0
(

and

T “
 

pz, tq P Rm`q : Q pz, t, g1 pz, tq , . . . , gq pz, tqq “ 0
(

.

Suppose first that m “ n. Then AYB is the projection onto the first m coordinates
of the F -set
 

px, y, tq P Rm`p`q : P px, y, f1 px, yq , . . . , fp px, yqq ¨Q px, t, g1 px, tq , . . . , gq px, tqq “ 0
(

,

and AXB is the projection onto the first m coordinates of the F -set

tpx, z, tq P Rm`p`q : P px, y, f1 px, yq , . . . , fp px, yqq
2

`Q px, t, g1 px, tq , . . . , gq px, tqq
2
“ 0u.

(2) The names Tarski and Seidenberg are traditionally associated for this result. In fact, A. Tarski
gave a first proof in [76] in 1951. Later, in 1954, A. Seidenberg gave a new proof in [69]. The technical
difference between the two proofs is explained in Seidenberg’s article, p. 374, additional remark (e):
in Tarski’s method, Sturm’s Theorem is used to eliminate each variable, whereas in Seidenberg’s
proof, Sturm’s theorem is used only once, to eliminate the last variable.
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