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COARSE TOPOLOGY, ENLARGEABILITY,
AND ESSENTIALNESS

 B HANKE, D KOTSCHICK, J ROE
 T SCHICK

A. – Using methods from coarse topology we show that fundamental classes of closed
enlargeable manifolds map non-trivially both to the rational homology of their fundamental groups
and to the K-theory of the corresponding reduced C∗-algebras. Our proofs do not depend on the
Baum–Connes conjecture and provide independent confirmation for specific predictions derived from
this conjecture.

R. – En utilisant des méthodes de topologie à grande échelle, on prouve que les classes
fondamentales des variétés agrandissables ne s’annulent pas, ni dans l’homologie rationnelle de leurs
groupes fondamentaux, ni dans la K-théorie des C∗-algèbres réduites correspondantes. Nos résultats
ne dépendent pas de la conjecture de Baum–Connes, et confirment de façon indépendante certaines
conséquences de cette conjecture.

1. Introduction and statement of results

In this paper we use methods from coarse topology to prove certain homological prop-
erties of enlargeable manifolds. The defining property of this class of manifolds is that they
admit covering spaces that are uniformly large in all directions. The intuitive geometric
meaning of enlargeability is naturally captured by concepts of coarse topology, in particular
by the notion of macroscopic largeness. We proceed by showing that enlargeability implies
macroscopic largeness, which in turn implies homological statements in classical, rather
than coarse, algebraic topology.

Using completely different methods, related results were previously proved in [15, 16]. We
shall discuss the comparison between the two approaches later in this introduction, after set-
ting up some of the terminology to be used. Suffice it to say for now that our results here,
unlike those of [15, 16], are relevant to the Baum–Connes conjecture for the reduced group
C∗-algebra, in that we verify specific predictions derived from this conjecture.
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Enlargeability. – Several versions of the notion of enlargeability or hypersphericity were in-
troduced by Gromov and Lawson in [13, 14]. Here is the basic definition:

D 1.1. – A closed oriented manifoldM of dimension n is called enlargeable if
for every ε > 0 there is a covering space Mε −→M that admits an ε-contracting map

fε : Mε −→ (Sn, gcan)

to the n-sphere with its canonical metric, which is constant outside a compact set, and is of
nonzero degree.

Here all covering spacesMε are given the pullback metrics induced by an arbitrary metric
on M . The choice of metric on M matters only in that it has to be independent of ε.

A variation on this definition is obtained by restricting the kind of covering space allowed
forMε. We shall callM universally enlargeable if it is enlargeable and for all ε the coveringMε

can be taken to be the universal covering M̃ −→M . We shall call M compactly enlargeable
if it is enlargeable and all Mε can be taken to be compact, equivalently to be finite-sheeted
coverings.

Essentialness. – Recall that Gromov [9] called a closed oriented manifold M essential if
its fundamental class maps non-trivially to the rational homology of Bπ1(M) under the
classifying map of its universal cover. It is natural to extend this definition to more general
situations. For any homology theoryE, we say that anE-oriented manifoldM isE-essential
if its orientation class maps non-trivially to E∗(Bπ1(M)) under the classifying map of the
universal covering.

In the context of coarse topology, one replaces the usual orientation class ofM by the ori-
entation class of the universal covering M̃ in the coarse homology HX∗(M̃), see Section 2
below. Passing to the coarse homology of the universal covering is a procedure not unlike
passing fromM to the classifying space of its fundamental group, and the coarse fundamen-
tal class [M̃ ]X may well vanish. We shall say that a manifold M (or its universal covering)
is macroscopically large if it is essential for coarse homology, i. e. if [M̃ ]X 6= 0 ∈ HX∗(M̃).
In fact, Gromov suggested various versions of macroscopic largeness in [10, 11, 12], and this
definition, taken from [8], is just one particular way of formalizing the concept.

We can now state our first main result.

T 1.2. – (1) Universally enlargeable manifolds are macroscopically large.

(2) Macroscopically large manifolds are essential in rational homology.

There are results by Dranishnikov [6] addressing the converse to the first part of this the-
orem. He has shown that other notions of macroscopic largeness sometimes imply versions
of enlargeability.

Combining the two implications in Theorem 1.2, we obtain:

C 1.3. – Universally enlargeable manifolds are essential in rational homology.
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F 1. The connected balloon space Bn

That compactly enlargeable manifolds are essential was conjectured by Burghelea [26,
Problem 11.1] quite some time ago and was proved fairly recently by Hanke and Schick [15],
using index theory and the K-theory of C∗-algebras. One of the motivations for the present
paper was the wish to give a direct and elementary proof of such a result, which does not use
index theory andK-theory. After we achieved this goal by finding the proof of Theorem 1.2
given in Section 3 below, it turned out that the sophisticated methods of [15] can also be
adapted to the consideration of infinite covers [16].

While the ideas involved in our proof of Theorem 1.2 are indeed geometric and elemen-
tary, they do fit naturally into the framework of coarse homology, which we recall in Section 2
following the books [22, 24]. Our argument makes essential use of the coarse space

Bn = [0,∞)
⋃

{1,2,3,...}

(∪iSn(i)) .

This balloon space, sketched in Figure 1, is a coarse analogue of the one-point union. It is
defined using a collection of n-spheres of increasing radii i = 1, 2, 3, . . . , with the sphere of
radius i attached to the point i ∈ [0,∞) at the south pole of Sn, and is equipped with the
path metric.

The enlargeability assumption will be used to construct a coarse map

M̃ −→ Bn

that sends the coarse fundamental class of M̃ to a nonzero class in the coarse homology of
Bn (see Proposition 3.1). After this has been established, the proof of Theorem 1.2 can be
completed quite easily.

Applications to the Baum–Connes map. – After giving the proof of Theorem 1.2, we proceed
to use coarse topology to study the relation between enlargeability and the Baum–Connes
assembly map in complex K-theory. This will lead us to some novel results on the Baum–
Connes map that are interesting both in their own right and because of what they say about
the relationship between various obstructions to the existence of positive scalar curvature
metrics.

To formulate our results we make the following definition.

D 1.4. – A closedK-theory oriented manifoldM is Baum–Connes essential if
the image of its K-theoretic fundamental class under the composite map

K∗(M)
c∗−→ K∗(Bπ1(M))

µ−→ K∗(C
∗
redπ1(M))

is non-zero. Here, c : M −→ Bπ1(M) classifies the universal covering of M , and µ is the
Baum–Connes assembly map.
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In contrast to [15, 16], we will work with the reduced group C∗-algebra throughout the
present paper. We use the letter K for the compactly supported complex K-homology de-
fined by the K-theory spectrum. This is different from the convention in [22], where K∗ de-
notes the analytically defined, hence locally finite K-homology.

Recall that a smooth manifold M is orientable with respect to K-theory if and only if
its tangent bundle admits a Spinc-structure. If M is compact, then any choice of Spinc-
structure determines a fundamental class [M ] in K-homology given by the corresponding
Dirac operator, cf. [18, Chapter 11]. The image

α(M) = µ ◦ c∗([M ]) ∈ K∗(C∗redπ1(M))

is given by the index of the Spinc Dirac operator on M twisted by the flat Hilbert module
bundle

M̃ ×π1(M) C
∗
redπ1(M) −→M

on M , as can be seen for example by a description of the Baum–Connes assembly map via
Kasparov’s KK-theory; cf. [3].

If a Spinc-structure on M is induced by a spin structure, then the above construction can
also be performed in real K-theory, leading to αR(M) ∈ KO∗(C

∗
redπ1(M)). In this case

α(M) is the image of αR(M) under complexification. The Weitzenböck formula for the spin
Dirac operator implies via the Lichnerowicz argument that if M endowed with the funda-
mental class of a spin structure is Baum–Connes essential, then it does not admit a metric
of positive scalar curvature. The Gromov–Lawson–Rosenberg conjecture predicts that the
vanishing of αR(M) on a closed spin manifoldM is not only necessary, but also sufficient for
the existence of a positive scalar curvature metric on M . Although this conjecture does not
hold in general [7, 25], it is expected that αR(M) captures all index-theoretic obstructions to
the existence of a positive scalar curvature metric onM . This expectation is based in part on
the relationship between the Gromov–Lawson–Rosenberg conjecture and the Baum–Connes
conjecture.

Recall [2] that the Baum–Connes conjecture claims that for any discrete group Γ, the as-
sembly map

KΓ
∗ (EΓ) −→ K∗(C

∗
redΓ)

is an isomorphism, where EΓ is the universal space for proper Γ-actions, and K∗ denotes
K-homology with compact supports. The assembly map

µ : K∗(BΓ) −→ K∗(C
∗
redΓ)

considered above factors as

K∗(BΓ)
∼=−→ KΓ

∗ (EΓ)
γ−→ KΓ

∗ (EΓ) −→ K∗(C
∗
redΓ) ,

where the first map is the canonical isomorphism between the equivariant K-theory of the
free Γ-space EΓ and the K-theory of the quotient BΓ and γ is induced by the canonical
map EΓ → EΓ. Stolz [27] has proved that if M is spin and the Baum–Connes conjecture
holds for the group π1(M), then the vanishing of αR(M) is sufficient for M to stably admit
a metric of positive scalar curvature. Here “stably” means that one allows the replacement
of M by its product with many copies of a Bott manifold B, which is any simply connected
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