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ON NON-BASIC RAPOPORT-ZINK SPACES

 E MANTOVAN

A. – In this paper we study certain moduli spaces of Barsotti-Tate groups constructed
by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class
of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-
basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents.

This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction
that their l-adic cohomology groups provide a realization of certain cases of local Langlands correspon-
dences and in particular to the question of whether they contain any supercuspidal representations.

Our results are compatible with this prediction and identify many cases when no supercuspidal
representations appear. In those cases, we prove that the l-adic cohomology of the non-basic spaces is
equal (in the appropriate sense) to the parabolic induction of the l-adic cohomology of some associated
lower-dimensional (and in the most favorable cases basic) Rapoport-Zink spaces. Such an equality
was originally conjectured by Harris in [11] (Conjecture 5.2, p. 420).

R. – Dans cet article, on considère certains espaces de Rapoport-Zink non-ramifiés, asso-
ciés à des groupes p-divisibles non-basiques et on étudie leur géométrie vis-à-vis de celle des espaces de
Rapoport-Zink basiques correspondants.

L’origine de ce problème se situe, d’une part, dans la conjecture de Kottwitz concernant la réali-
sation des correspondances de Langlands locales dans la cohomologie étale l-adique des espaces de
Rapoport-Zink et, d’autre part, plus simplement dans la question d’identifier pour lesquels de ces es-
paces la partie supercuspidale de la cohomologie n’est pas vide.

Nos résultats sont compatibles avec cette conjecture et, dans certains cas particuliers, ils répondent
à la dernière question. En particulier, dans ces cas, on établit une formule reliant la cohomologie de
ces espaces à l’induction parabolique de celle de certains espaces de Rapoport-Zink de dimension in-
férieure (et dans les cas plus favorables basiques). Cette formule a été précédemment conjecturée par
Harris dans [11] (Conjecture 5.2, p. 420).
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1. Introduction

1.1. – In [31] Rapoport and Zink introduce some local analogues of (PEL) type Shimura va-
rieties, in the category of rigid analytic spaces over a p-adic local field. (PEL) type Shimura
varieties arise as moduli spaces of abelian varieties with additional structures, namely endo-
morphisms, polarizations and level structures. Similarly, the spaces constructed by Rapoport
and Zink are moduli spaces of Barsotti-Tate groups with the analogous additional structures.

A conjecture of Langlands predicts that some cases of correspondences between automor-
phic representations and global Galois representations are realized inside the cohomology of
Shimura varieties. Analogously, a conjecture of Kottwitz (which is heuristically compatible
with the conjecture of Langlands) predicts that some cases of correspondences between ad-
missible representations of p-adic groups and local Galois representations are realized in the
cohomology of the spaces constructed by Rapoport and Zink. (For linear groups over a lo-
cal field, both the local case of Langlands’ conjecture and Kottwitz’s conjecture have been
proved, respectively in [12], and [8].)

In the global case, the construction of Shimura associates to certain algebraic groupsG/Q
(together with a conjugacy class of homomorphisms h : S → GR) a projective system of
varieties defined over a number field E (called the reflex field), whose cohomology groups
(regarded as an inductive limit) are naturally representations of the product of two groups:
the points ofG over the finite adeles of Q,G(Af ), and the absolute Galois group ofE. Con-
jecturally, these groups realize the correspondence between automorphic representations of
G and representations of the global Weil group of E. In the local case, the construction of
Rapoport and Zink depends not only on a choice of an algebraic groupG/Qp (together with
a conjugacy class of cocharacters µ : Gm → G) but also on a further datum b associated with
(G,µ). Moreover, the cohomology groups of the Rapoport-Zink spaces (again regarded as
an inductive limit) are naturally representations of the product of three groups: the p-adic
group G(Qp), the Weil group of the local reflex field, WE , and a second p-adic group Jb de-
pending on the new data, also of the form Jb = Jb(Qp), for an algebraic group Jb/Qp.

The presence of a third group raises important new questions. If we maintain our focus
on the algebraic groupG, a first goal is understanding the role played by the data (b, µ), and
in particular, whether all admissible pairs would be relevant in a proof of the existence of
the local Langlands correspondence for the group G via the study of the cohomology of the
Rapoport-Zink spaces. This question amounts to investigate for which pairs (b, µ) the coho-
mology of the associated Rapoport-Zink spaces contains supercuspidal representations of
G(Qp).

More completely, one would like to understand the role played by the group Jb. Indeed,
Kottwitz’s conjecture predicts that the cohomology of the Rapoport-Zink spaces not only re-
alizes (some cases of) the local Langlands correspondence for the group G, but also for the
group Jb, for each b. Furthermore, the obvious compatibility between the two correspon-
dences (due to the fact that they are realized inside the same cohomology groups) would be
an example of Langlands’ functoriality principle (for each b the group Jb is an inner form of
a Levi subgroup of G). Equivalently, the cohomology groups of the Rapoport-Zink spaces
conjecturally also realize a generalized Jacquet-Langlands correspondence for Jb and G.
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Kottwitz’s predictions provide a conjectural answer to the first question we raised. In fact,
they imply that supercuspidal representations of G(Qp) should appear only in the cohomol-
ogy groups of the Rapoport-Zink spaces associated with pairs (b, µ) for which Jb is an inner
form of G (such pairs are called basic). More precisely, they predict that, for any admissible
pair b, the admissible representations of G(Qp) which arise in the cohomology of the asso-
ciated Rapoport-Zink spaces are parabolically induced from the Levi subgroup of G(Qp)

which is an inner form of Jb.

Extending Kottwitz’s predictions, in [11] (Conjecture 5.2, p. 420) Harris conjectured
that the l-adic cohomology of non-basic Rapoport-Zink spaces is equal (in the appropriate
Grothendieck group) to the non-normalized parabolic induction of the l-adic cohomology
of the corresponding basic spaces, for a specified choice of the associated parabolic sub-
group. Such a reduction of the computation of the l-adic cohomology of the Rapoport-Zink
spaces associated with a group G to that of the basic cases for G and its Levi subgroups
can be viewed as mirroring the results describing the admissible representations of G(Qp) in
terms of the supercuspidal representations of G(Qp) and of its Levi subgroups. In the case
of G = GLn and µ = (0, . . . , 0, 1) (i.e. in the case of Drinfeld’s modular varieties) Harris’
conjecture was already known, due to the work of Boyer ([4]), and played an important role
in the proof of the existence of the local Langlands’ correspondence for GLn in [12], and
consequently also in [8].

1.2. – Let G = ResF0/Qp(G0), for F0/Qp an unramified finite extension and G0 = GLn
or GSp2n, for some integer n ≥ 1. The goal of this paper is to investigate the above con-
jectures for the admissible pairs (b, µ) associated with such a group G/Qp. In particular, we
will establish some instances of a variant of the conjecture of Harris.

Let us fixµ and consider the setB(G,µ) of all possible b’s such that the pair (b, µ) is admis-
sible. This is defined as a subset of the set of σ-conjugacy classes inG(K), forK the maximal
unramified extension of Qp and σ its Frobenius automorphism. Its definition is originally
due to Kottwitz who in [17] and [19] studied the set B(G) of all σ-conjugacy classes in
G(K), for G any connected reductive group over Qp. This set classifies isomorphism classes
of F -isocrystals with G-structures over k, for k the residue field of the ring of integers of
K. Indeed, each element b ∈ G(K) defines an exact faithful tensor functor Nb from the
category of p-adic representations of G to that of F -isocrystals over k, via Nb(W,ρ) =

(W ⊗ K, ρ(b)(idW ⊗ σ)). It follows from the definition that any such functor N is defined
by a unique b ∈ G(K), and that if b, b′ are σ-conjugate in G(K) then the corresponding
functorsNb, Nb′ are isomorphic. For each b ∈ G(K), the group Jb is by definition the group
of automorphisms of the F -isocrystal with G-structures Nb. (Thus if b, b′ are σ-conjugate
in G(K) then the associated groups Jb, Jb′ are isomorphic.) In the cases we are interested
in, any such functor N is uniquely determined by its value on the natural representation of
G. Therefore, in these cases, an F -isocrystal with G-structures (defined as an exact faithful
tensor functor) is simply an F -isocrystal (in the classical sense) together with additional
structures, namely given endomorphisms and/or a non-degenerate alternating pairing.

We return to these cases, i.e. to G as at the beginning of the section, and denote by V the
natural representation of G. To each b ∈ G(K), we associate the Newton polygon νb of the
correspondingF -isocrystal withG-structures over k,Nb(V ). Then the setB(G,µ) is realized
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as a subset of the set of convex polygons with integral break-points and the same end-points
(Newton polygons), all lying above a fixed convex polygon, also with integral break-points
and the same end-points, associated with µ (the Hodge polygon). It follows that there is a
natural partial order on the set B(G,µ): for any two elements b, b′ in B(G,µ), we say b ≥ b′
if all points of νb lie below or on νb′ . Under this partial ordering (which is called the Bruhat
ordering), B(G,µ) has unique maximal element, which is called µ-ordinary (and the corre-
sponding admissible pair ordinary), and a unique minimal element corresponding to the ba-
sic pair. (A group-theoretic description of the Newton map for G any connected reductive
group over Qp is discussed by Rapoport and Richartz in [30].)

Let b0 be the µ-ordinary element in B(G,µ). The following definition is justified by the
results in [24] (we report on them in section 6). We say that an element b ∈ B(G,µ) (or the
corresponding admissible pair (b, µ))) is of (HN) type if there is a break-point x of νb which
lies on νb0 and the two polygons coincide up to x or from x on. We call such a break-point x
of νb also of (HN) type. We remark that whenG is symplectic the polygon νb is symmetric (for
any b). Thus, for each break-point x of νb there is an associated symmetrical break-point x̂.
Furthermore, it is an easy observation that x is of (HN) type if and only if x̂ is of (HN) type.
To each b of (HN) type we attach a Levi subgroup Mb of G as follows. Every break-point
x = (x1, x2) ∈ Z2 of νb defines a decomposition of the F -isocrystal Nb(V ) = V 1 ⊕ V 2,
for V 1, V 2 the two sub-F -isocrystals of Nb(V ) characterized by the properties that V 1 has
Newton polygon ν1 consisting of the first x1 slopes of νb and V 2 has Newton polygon ν2 con-
sisting of the remaining slopes of νb. Then, to any subset S of the set of break-points of νb
we associate the unique common refinement of the decompositions ofNb(V ) corresponding
to each x ∈ S. It follows from the definition that any such decomposition is coarser than
or equal to the slope decomposition (i.e. the decomposition ofNb(V ) into isoclinic factors),
which in these notations is the decomposition associated with the set of all break-points of
νb. In particular, it follows from the analogous statements for the slope decomposition that
any such decomposition of V is F0-linear, for F0/Qp the field extension as at the beginning
of the section, and in the case when G is symplectic compatible with the symplectic pairing
on V if the set S is symmetrical, i.e. satisfying the condition x ∈ S if and only if x̂ ∈ S.
For each b ∈ B(G,µ) of (HN) type we define Mb to be the stabilizer in G of the decomposi-
tion of V into p-adic vector subspaces, which underlies the decomposition of theF -isocrystal
Nb(V ) associated with the set of all break-points of νb of (HN) type. It follows from the defi-
nition thatMb is a Levi subgroup ofG. Finally, we also write Lb for the stabilizer inG of the
decomposition of V underlying the slope decomposition of Nb(V ). Then, Lb is also a Levi
subgroup ofG and it is an inner form of Jb (see [17], Section 5.2, p. 215; [31], Corollary 1.14,
p. 11) . It follows from the definition that for each b of (HN) type Mb ⊇ Lb, and Mb = Lb
if all the break-points of νb are of (HN) type (i.e. when all but possibly one of the sides of νb
lie on the µ-ordinary polygon νb0 ).

In this paper, we prove that if the admissible pair (b, µ) is of (HN) type then the l-adic
cohomology groups of the associated Rapoport-Zink spaces contain no supercuspidal rep-
resentations. More precisely, we prove, for pairs of (HN) type, a variant of Harris’ conjecture
which shows that, as representations of G(Qp), these cohomology groups are parabolically
induced from Mb(Qp) to G(Qp). In the special cases when Mb = Lb, e.g. for b = b0, we
prove Harris’ conjecture.
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