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LOCAL DENSITY OF DIFFEOMORPHISMS
WITH LARGE CENTRALIZERS

 C BONATTI, S CROVISIER, G M. VAGO
 A WILKINSON

A. – Given any compact manifold M , we construct a non-empty open subset O of the
space Diff1(M) of C1-diffeomorphisms and a dense subset D ⊂ O such that the centralizer of every
diffeomorphism in D is uncountable, hence non-trivial.

R. – Pour toute variété M compacte, de dimension quelconque, nous construisons une par-
tie O ⊂ Diff1(M) non vide, ouverte dans l’espace Diff1(M) des C1-difféomorphismes de M , et un
sous-ensemble D ⊂ O dense en O, constitué de difféomorphismes dont le centralisateur est non dé-
nombrable, donc non trivial.

Introduction

The centralizer of a Cr diffeomorphism f ∈ Diffr(M) is the group of diffeomorphisms
commuting with f :

C(f) := {g ∈ Diffr(M) : fg = gf}.

The centralizerC(f) always contains the group 〈f〉 of all the powers of f . For this reason,
we say that f has a trivial centralizer if C(f) = 〈f〉. If f is the time one map of a Cr vector
field X, then C(f) contains the flow of X and hence contains a subgroup diffeomorphic to
R (or S1 = R/Z if f is periodic).

The elements ofC(f) are transformations ofM which preserve the dynamics of f : in that
sense they are the symmetries of f . How large is, in general, this symmetry group?

– On one hand, the structure on M given by a diffeomorphism is very flexible, so that
one might expect that any symmetry could be broken by a small perturbation of the
diffeomorphism.
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– On the other hand, the symmetries are sought in the very large group Diffr(M), which
makes the problem harder. For example, one can easily show that the group C0(f)

of homeomorphisms commuting with a Morse-Smale diffeomorphism f is always un-
countable.

Nevertheless it is natural to guess that general diffeomorphisms have no non-trivial smooth
symmetries. Making this intuition explicit, Smale asked the following:

Q I ([15, 16]). – Let T r(M) ⊂ Diff r(M), r ≥ 1, denote the set of Cr diffeomor-
phisms of a compact manifold M with trivial centralizer.

1. Is T r(M) dense in Diff r(M)?
2. Is T r(M) residual in Diff r(M)? That is, does it contain the intersection of countably

many dense open subsets?
3. Is T r(M) a dense open subset of Diff r(M)?

We think it is natural to reformulate the third part of Smale’s question as:

Q II. – Does T r(M) contain a dense and open subset of Diff r(M)?

This question has many parameters, the most obvious being the regularity r of the diffeo-
morphisms and the dimension dim(M) of the manifold. The question has been answered in
varying degrees of generality for specific parameters. For instance, Kopell [12] proved that
Diffr(S1), r ≥ 2, contains a dense and open subset of diffeomorphisms with trivial central-
izers. Many authors subsequently gave partial answers in higher dimension (see [5] for an
attempt to list these partial results).

The present paper and [7] together give a complete answer to Smale’s problem for r = 1.
More precisely:

– [7] proves that C1-generic diffeomorphisms have a trivial centralizer (1), giving a
positive answer to the first two parts of Smale’s question. [6] shows that C1-generic
conservative (volume preserving or symplectic) diffeomorphisms have a trivial cen-
tralizer.

– In this paper, we answer in the negative (for r = 1) the third part of Smale’s question
(and to Question II) on any compact manifold.

M . – Given any compact manifold M , there are a non-empty open subset
O ⊂ Diff1(M) and a dense subsetD ⊂ O such that every f ∈ D is C∞ and its C∞-centralizer
C∞(f) is uncountable (hence not trivial).

We will see below (see Theorem 5) that this statement also holds for symplectic diffeomor-
phisms on a symplectic manifold.

The uniform presentation of this result (Given any compact manifold,...) hides very
different situations, arguments and results according to the dimension: namely, whether
dim(M) < 3 or dim(M) ≥ 3. We discuss this breakdown of the results below.

Our paper also deals with the question of how large is the class of diffeomorphisms that
can be embedded in a flow. This is a natural question, since the studies of the dynamical

(1) [5] is an announcement which gives the structure of the detailed proof written in [7].
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systems defined either by diffeomorphisms or by vector fields are in fact closely related. In
the paper [14] titled Vector fields generate few diffeomorphisms, Palis proved that C1-generic
diffeomorphisms cannot be embedded in a flow. Our results somehow counterbalance Palis’
statement: diffeomorphisms that are the time one map of a flow are C1-locally dense in di-
mension 1 and 2.

T 1. – There is a dense subset D ⊂ Diff1(S1) such that every f ∈ D commutes
with the flow of a C∞ Morse-Smale vector field X. More precisely, f is Morse-Smale and fq

is the time one map of the flow of X, where q = 2, if f is orientation reversing, and q is the
period of the periodic orbits of f otherwise. Furthermore, C(f) is isomorphic to R× (Z/qZ).

(Section 1.6 presents open questions on centralizers of diffeomorphisms in Diff1(S1).)
Among compact surfaces, the case of the sphere is special because of the existence of north

pole-south pole diffeomorphisms. The symmetries of these dynamics allow us to get a cen-
tralizer isomorphic toS1×R and this is one of the reasons why we present this case separately.

Another specific feature of the north-south diffeomorphisms of the sphere is that for these
maps it is possible to generalize the so-called Mather invariant, introduced by Mather in the
one-dimensional case. Such an invariant plays a fundamental role in our constructions: the
Mather invariant of a diffeomorphism f is trivial if and only if f can be perturbed to become
the time one map of a vector field.

T 2. – Let O ⊂ Diff1(S2) denote the (open) subset of Morse-Smale diffeomor-
phisms f such that the nonwandering set Ω(f) consists of two fixed points, one source Nf and
one sink Sf , such that the derivatives DNf

f and DSf
f have each a complex (non-real) eigen-

value.
Then there is a dense subset D ⊂ O such that every f ∈ D is the time one map of a Morse-

Smale C∞-vector field. Furthermore C(f) is isomorphic to R× S1.

Theorem 2 is a bridge between the one-dimensional case and the general two-dimensional
case. One the one hand, north pole-south pole dynamics on the sphere and Morse-Smale
dynamics on the circle share the Mather invariant; on the other hand, other features of these
dynamics on the sphere occur in simple dynamics on a general compact surface. The general
case is solved by a combination of the arguments used for the sphere in a neighborhood of
the sinks and the sources, together with an analysis of the local situation in a neighborhood
of the saddles.

T 3. – Let S be a connected closed surface. LetO ⊂ Diff1(S) be the set of Morse-
Smale diffeomorphisms f such that:

• any periodic point is a (hyperbolic) fixed point,
• f has at least one hyperbolic saddle point,
• for any hyperbolic saddle x, every eigenvalue of Df(x) is positive,
• for any sink or source x, the derivative Df(x) has a complex (non-real) eigenvalue,
• there are no heteroclinic orbits: if x 6= y are saddle points then W s(x) ∩Wu(y) = ∅.

Then O is a non-empty open subset of Diff1(S) and there is a dense subset D ⊂ O such that
every f ∈ D is the time one map of a Morse-Smale C∞-vector field. Furthermore, C(f) is the
flow of this vector field, hence isomorphic to R.
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An important hypothesis in Theorems 2 and 3 (which holds trivially in Theorem 1) is that
the derivative at each sink and source is conjugate to the composition of a homothety with a
(non-trivial) rotation. This condition is open in dimension 2, but is nowhere dense in higher
dimension. This explains why we are not able to obtain the local density of the embeddability
in a flow in higher dimension, and naturally leads to the following question:

Q III. – Let M be a compact manifold of dimension d ≥ 3. Denote by O the
C1-interior of the C1-closure of the set of diffeomorphisms which are the time one map of a
flow. Is O empty?

In low dimension we find large centralizers among the simplest dynamical systems (the
Morse-Smale systems). By contrast, in higher dimension we will use C1-open subsets of
wild diffeomorphisms to obtain periodic islands where the return map is the identity map.
The resulting large centralizers for these wild diffeomorphisms are completely different. In
low dimension, we embed the diffeomorphisms in a flow, and the centralizer is precisely the
flow; hence all the diffeomorphisms in the centralizer have the same dynamics. In higher di-
mension, the diffeomorphisms we exhibit in the centralizer will be equal to the identity map
everywhere but in the islands, in restriction to which they can be anything. This explains our
result:

T 4. – Given any compact manifold M of dimension d ≥ 3, there is a non-empty
open subset O ⊂ Diff1(M) and a dense subset D ⊂ O such that every f ∈ D has non-trivial
centralizer.

More precisely, for f ∈ D the centralizer C(f) contains a subgroup isomorphic to the group
Diff1(Rd,Rd \ Dd) of diffeomorphisms of Rd which are equal to the identity map outside the
unit disc Dd.

The large centralizer we build for a diffeomorphism in Theorem 4 consists of diffeomor-
phisms which have a very small support, and which are therefore C0-close to the identity. It
would be interesting to know if this is always the case. Let us formalize this question:

Q IV. – Let M be a compact manifold with dim(M) ≥ 3 and ε > 0. Let Oε ⊂
Diff1(M) be the set of diffeomorphisms f such that, for every g ∈ C(f) there exists n ∈ Z such
that g ◦ fn is ε-close to the identity map for the C0-distance. Does Oε contain a dense open
subset of Diff1(M) for every ε?

If for non-conservative diffeomorphisms the existence of periodic islands depends on wild
dynamics, the same islands appear in a more natural way for symplectic diffeomorphisms in
a neighborhood of totally elliptic points. In order to state precisely this last result we need
some notations. Let M be a compact manifold with even dimension dim(M) = 2d. If M
carries a symplectic form ω, then we denote by Symp1

ω(M) the space ofC1-diffeomorphisms
of M that preserve ω (these diffeomorphisms are called symplectomorphisms).

Recall that a periodic point x of period n of a symplectomorphism f is called totally el-
liptic if all the eigenvalues of Dfn(x) have modulus equal to 1. If eiα is an eigenvalue of x
then e−iα is also an eigenvalue. Assume that 0 < α1 < · · · < αd < π are the absolute
values of the argument of the eigenvalues of x. Then x is C1-robustly totally elliptic: every
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