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LIMITS OF LOG CANONICAL THRESHOLDS

 T  FERNEX  M MUSTAT, Ă

A. – Let Tn denote the set of log canonical thresholds of pairs (X, Y ), with X a nonsingu-
lar variety of dimension n, and Y a nonempty closed subscheme of X. Using non-standard methods,
we show that every limit of a decreasing sequence in Tn lies in Tn−1, proving in this setting a conjecture
of Kollár. We also show that Tn is closed in R; in particular, every limit of log canonical thresholds on
smooth varieties of fixed dimension is a rational number. As a consequence of this property, we see
that in order to check Shokurov’s ACC Conjecture for all Tn, it is enough to show that 1 is not a point
of accumulation from below of any Tn. In a different direction, we interpret the ACC Conjecture as a
semi-continuity property for log canonical thresholds of formal power series.

R. – Dans cet article, nous analysons les ensembles Tn de seuils log canoniques de paires
(X, Y ), où X est une variété lisse de dimension n, et Y est un sous-schéma fermé non-vide de X. En
employant des méthodes non-standard, nous montrons que chaque limite d’une suite strictement dé-
croissante de Tn appartient à l’ensemble Tn−1 (ce résultat a été conjecturé par J. Kollár dans ses tra-
vaux sur le sujet). Nous montrons également que l’ensemble Tn est fermé dans R, et en déduisons que
les valeurs adhérentes de l’ensemble des seuils log canoniques des pairs (X, Y ) sont rationnelles, si la
dimension de X est majorée. Une autre conséquence de nos résultats concerne la conjecture ACC de
Shokurov pour les Tn. En effet, nous montrons qu’elle est une conséquence de l’énoncé suivant : pour
tout n, la valeur 1 ne peut pas être obtenue comme limite d’une suite strictement croissante de nombres
contenus dans Tn. Dans une autre perspective, nous interprétons la conjecture ACC comme une pro-
priété de semi-continuité de seuils log canoniqes des séries formelles.

1. Introduction

Let k be an algebraically closed field of characteristic zero. We consider pairs of the form
(X,Y ), where X is a smooth variety defined over k and Y ⊆ X is a nonempty closed sub-
scheme. For every integer n ≥ 0, we are interested in the set of all possible log canonical
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thresholds in dimension n

Tn(k) := {lct(X,Y ) | X smooth over k of dimension n, ∅ 6= Y ⊆ X} ⊆ R,

where we make the convention that lct(X,X) = 0. It is well-known that Tn(k) ⊆ Q. Note
that T0(k) = {0} and Tn−1(k) ⊆ Tn(k) for every n ≥ 1.

There are two fundamental questions regarding the accumulation points (in R) of these
sets.

C 1.1. – For every n, the set Tn(k) has no points of accumulation from below.

C 1.2. – For everyn ≥ 1, the set of points of accumulation from above of Tn(k)

is equal to Tn−1(k).

In particular, the two conjectures predict that every Tn(k) is closed, and that the set of its
accumulation points is equal to Tn−1(k). In fact, both conjectures have stronger formula-
tions, in which Tn(k) is defined under weaker conditions on the singularities of the ambient
variety X.

Conjecture 1.1, known as the ACC Conjecture, was formulated by Shokurov in [18], where
it was proved for n = 2 (in the more general context, alluded to in the previous paragraph).
Alexeev proved it for n = 3 in [1]. The main interest in this conjecture comes from its impli-
cations to the Minimal Model Program, more precisely, to the Termination of Flips Conjec-
ture (see [3] for a precise statement). Conjecture 1.2 above was suggested by Kollár in [11].
It was shown in [15] that Conjecture 1.2 follows if one assumes the Minimal Model Program
and a conjecture of Alexeev–Borisov–Borisov on the boundedness of Q-Fano varieties. In
particular, it is known to hold (in a more general formulation) for n ≤ 3.

It is not hard to see that the set Tn(k) is independent of k (see Propositions 3.1 and 3.3
below). From now on we simply write Tn instead of Tn(k). Our main goal is to prove Con-
jecture 1.2, as well as the fact that Tn is closed. We state our main results in the following
order.

T 1.3. – For every n, the set Tn is closed in R.

Since Tn ⊆ Q ∩ [0, n], this immediately implies the following useful property.

C 1.4. – Every limit of log canonical thresholds on smooth varieties of bounded
dimension is a rational number.

T 1.5. – For every n ≥ 1, the set of points of accumulation from above of Tn is
equal to Tn−1.

We mention that there are versions of these results when instead of arbitrary subschemes
we consider only hypersurfaces. Suppose thatHT n ⊆ Tn is defined by considering only pairs
(X,Y ), where Y is locally defined by one equation. In this case HT n = Tn ∩ [0, 1], hence
HT n is closed, too, and the set of points of accumulation from above of HT n is equal to
HT n−1 r {1}.

SinceHT n ⊆ Tn ⊆ n·HT n, it follows that Conjecture 1.1 holds if and only if, for every n,
the setHT n has no points of accumulation from below. As a consequence of Corollary 1.4,
we show that the conjecture can be reduced to a special case.
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C 1.6. – Conjecture 1.1 holds for every n if and only if the following special case
holds: for every n, there is δn ∈ (0, 1) such thatHT n ∩ (δn, 1) = ∅.

In a different direction, we investigate the ACC Conjecture using the Zariski topology on
the set of formal power series.

P 1.7. – Conjecture 1.1 holds for n if and only if, assuming that k is uncount-
able, for every c there is an integer N(n, c) such that the condition for f to lie in

Rn(c) := {f ∈ k[[x1, . . . , xn]] | f(0) = 0, lct(f) ≥ c}

depends only on the truncation of f up to degree N(n, c).

In fact, we will see that the setRn(c) has the property in the above proposition if and only
if it is open inside the maximal ideal with respect to the Zariski topology on k[[x1, . . . , xn]]

(see §5). Furthermore, Corollary 1.6 implies that in order to prove the ACC Conjecture for
every n, it is enough to prove the assertion in the proposition only for the setsRn(1).

The main ingredient in the proof of the above theorems is given by non-standard methods.
This approach is very natural in this context, when one wants to encode a sequence of
polynomials (or ideals) in a single object. In our case, we start with a sequence of ideals
am ⊂ k[x1, . . . , xn] whose log canonical thresholds converge to some c ∈ R. Ultrafilter
constructions give non-standard extensions of our algebraic structures: we get a field ∗k
containing k and a ring ∗(k[x1, . . . , xn]) containing k[x1, . . . , xn]. Moreover, there is a
truncation map from ∗

(k[x1, . . . , xn]) to the formal power series ring ∗k[[x1, . . . , xn]]. Our
sequence of ideals determines an ideal [am] ⊂ ∗(k[x1, . . . , xn]) whose image in ∗k[[x1, . . . , xn]]

we denote by ã. Our key result is that lct(ã) = c. After possibly replacing ∗k by a larger field
K, we obtain an ideal in a polynomial ring over K whose log canonical threshold is c. Since
Tn(k) is independent of k, we get the conclusion of Theorem 1.3. If the sequence {cm}m is
strictly decreasing, then we conclude that the limit is actually a log canonical threshold in a
smaller dimension via a more careful analysis of the singularities of the ideal ã. We mention
that non-standard methods were also employed in [5] to study the sets of F -pure thresholds
of hypersurfaces in positive characteristic (though in that case one could only obtain the
analogue of Theorem 1.3 above).

As it should be apparent from the above sketch of the proof, we need to work with log
canonical thresholds of ideals in formal power series rings. The familiar framework for
studying such invariants is that of schemes of finite type over a field. However, since resolu-
tions of singularities are available for arbitrary excellent schemes (see [19]), it is not hard to
extend the theory of log canonical thresholds and multiplier ideals to such a general setting.
We explain this extension in detail in the next section.

In §3 we discuss some elementary properties of the sets Tn, in particular the independence
of the base field. The proofs of the main results are contained in §4. In §5 we make some
comments on Conjecture 1.1, proving Corollary 1.6 and Proposition 1.7. The proposition
follows from a basic property of cylinders in the ring of formal power series. This interpreta-
tion of the ACC Conjecture illustrates once more that formal power series provide the natural
setting when considering sequences of log canonical thresholds.

After the first version of this article was made public, János Kollár gave a new proof of
the above theorems using an infinite sequence of approximations and field extensions in place
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of non-standard methods (at the core the two proofs are the same). In fact, making use of
results from [4], he obtains a stronger version of Theorem 1.5, showing that all accumulation
points of the set of log canonical thresholds in dimension n (not just the limits of decreasing
sequences) are log canonical thresholds in dimension n− 1.
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2. Multiplier ideals on excellent schemes

Our goal in this section is to develop the theory of multiplier ideals and log canonical
thresholds for ideals on a regular excellent scheme of characteristic zero. We will apply this
theory when the ambient space is either a smooth scheme of finite type over a field or the
spectrum of a formal power series ring over a field. All our schemes have characteristic zero,
that is, they are schemes over Spec(Q).

Recall that a Noetherian ring A is excellent if the following hold:

1) For every prime ideal p in A, the completion morphism Ap −→ Âp has geometrically
regular fibers.

2) For every A-algebra of finite type B, the regular locus of Spec(B) is open.
3) A is universally catenary.

For the basics on excellent rings we refer to [14]. It is known that every algebra of finite type
over an excellent ring is excellent, and that all complete Noetherian local rings are excellent.
A Noetherian scheme X is excellent if it admits an open cover by spectra of excellent rings.

The key ingredient in building the theory of multiplier ideals is the existence of log
resolutions of singularities. It was shown in [19] that Hironaka’s Theorem giving existence
of resolutions for integral schemes of finite type over a field implies the following general
statement (in fact, the result in loc. cit. holds for quasi-excellent schemes, but we do not
need this generality).

T 2.1 ([19]). – Let X be an integral, excellent scheme of characteristic zero, and
let Y ↪→ X be a proper closed subscheme. There is a proper, birational morphism f : X ′ −→ X

with the following properties:

i) X ′ is a regular scheme.
ii) The inverse image f−1(Y ) is a divisor with simple normal crossings.

Moreover, if U ⊆ X is an open subset of X that is regular, and such that U ∩ Y = ∅, then
one can take f to be an isomorphism over U . We note that while the statement in loc. cit. only
gives that f−1(Y ) has normal crossings, further resolving to a simple normal crossings divisor
is standard.
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