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TWO-DIMENSIONAL
VOLUME-FROZEN PERCOLATION:

DECONCENTRATION AND PREVALENCE
OF MESOSCOPIC CLUSTERS

 J VAN DEN BERG, D KISS  P NOLIN

A. – Frozen percolation on the binary tree was introduced by Aldous [1], inspired by
sol-gel transitions. We investigate a version of the model on the triangular lattice, where connected
components stop growing (“freeze”) as soon as they contain at leastN vertices, whereN is a (typically
large) parameter.

For the process in certain finite domains, we show a “separation of scales” and use this to prove a
deconcentration property. Then, for the full-plane process, we prove an accurate comparison to the
process in suitable finite domains, and obtain that, with high probability (as N ! 1), the origin
belongs in the final configuration to a mesoscopic cluster, i.e., a cluster which contains many, but much
fewer than N , vertices (and hence is non-frozen).

For this work we develop new interesting properties for near-critical percolation, including asymp-
totic formulas involving the percolation probability �.p/ and the characteristic lengthL.p/ asp & pc .

R. – La percolation gelée sur l’arbre binaire a été introduite par Aldous [1], inspiré par les
transitions sol-gel. Nous étudions une version de ce modèle sur le réseau triangulaire, pour laquelle les
composantes connexes arrêtent de croître (« gèlent ») dès qu’elles contiennent au moins N sommets,
où N est un paramètre (typiquement grand).

Pour le processus dans certains domaines finis, nous prouvons une « séparation d’échelles », et
nous l’utilisons pour démontrer une propriété de déconcentration. Ensuite, pour le processus dans
tout le plan, nous établissons une comparaison précise avec le processus dans des domaines finis
adéquats, et nous obtenons qu’avec grande probabilité (lorsque N ! 1), l’origine appartient, dans
la configuration finale, à une composante connexe mésoscopique, c’est-à-dire, une composante qui
contient un grand nombre de sommets, mais beaucoup moins que N (et qui est donc non-gelée).

Pour ce travail, nous développons de nouvelles propriétés intéressantes de la percolation presque-
critique, en particulier des formules asymptotiques faisant intervenir la probabilité de percolation �.p/
et la longueur caractéristique L.p/ quand p & pc .
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1. Introduction

1.1. Frozen percolation

Frozen percolation is a growth process which was first introduced by Aldous [1] on the
binary tree, motivated by sol-gel transitions [39]. Let us first describe it informally, on an
infinite simple graph G D .V;E/, where the vertices may be interpreted as particles. We
start with all edges closed (i.e., all particles are isolated), and we try to turn them open inde-
pendently of each other: at some random time �e uniformly distributed between 0 and 1,
the edge e 2 E becomes open if and only if it connects two finite open connected compo-
nents (otherwise it just stays closed). In other words, a connected component grows until it
becomes infinite (i.e., it gelates), at which time it just stops growing: we say that it freezes,
which explains the name of the process. Apart from sol-gel transitions, one may think of
other interpretations, e.g., population dynamics (group formation), and pattern formation in
general. There are, somewhat surprisingly at first sight, also interesting connections with (and
potential applications to) forest-fire models (at least in the two-dimensional setting, studied
in this paper).

The existence of the frozen percolation process is not clear at all. In [1], Aldous studies the
case whenG is the infinite 3-regular tree, as well as the case of the planted binary tree (where
all vertices have degree 3, except the root vertex which has degree 1): using the tree structure,
which allows for explicit computations, he shows that the frozen percolation process does
exist in these two cases (and that it exhibits a fascinating form of self-organized critical
behavior). However, Benjamini and Schramm noticed soon after Aldous’ paper that such a
process does not exist on the square lattice Z2 (see also Remark (i) after Theorem 1 in [10]).

In order to circumvent this non-existence issue, a “truncated” process was studied in [8] by
de Lima and two of the authors, where a connected component stops growing when it reaches
a certain “size” N , where N � 1 is some parameter of the process. Formally, the original
frozen percolation process corresponds to N D 1, and one would like to understand what
happens as N !1, in view of the non-existence result.

When N is finite, “size” can have various meanings, and in [8], the size of a cluster is
measured by its diameter. This diameter-frozen process was then further studied by the
second author in [25], who established a precise description as N ! 1, which, roughly
speaking, can be summarized as follows. Let us fix some K > 1, and look at a square of
side length KN (centered at 0): only finitely many frozen clusters appear (the probability
that there are more than k such clusters decays exponentially in k, uniformly in N ), and
they all freeze in a near-critical window around the percolation threshold pc . In particular,
it is shown that the frozen clusters all look like near-critical percolation clusters, with total
density converging to 0 as N ! 1, and with high probability the origin does not belong
to a frozen cluster: in the final configuration, a typical point is on a macroscopic non-frozen
cluster, i.e., a cluster with diameter of order N , but smaller than N .

The truncated process on a binary tree is studied in [7], where it is shown that the final
configuration is completely different: a typical point is either on a frozen cluster (i.e., with
diameter � N ), or on a microscopic one (with diameter O.1/), but one observes neither
macroscopic non-frozen clusters, nor mesoscopic ones. Moreover, the way of measuring the
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size of a cluster does not really matter in this case: under mild hypotheses (see Theorem 2
in [7]), the process converges (in some weak sense) to Aldous’ process as N !1.

In [9] two of us returned to the case of a two-dimensional lattice, where this time the
size of a cluster was measured by its volume, i.e., the number of vertices that it contains.
In that paper, we studied large finite boxes with side length a function m.N/ of the param-
eter N . Using classical percolation techniques (e.g., Russo-Seymour-Welsh a-priori bounds,
and Kesten’s scaling relations [23]), we showed that there is a sequence of “length scales”
m1.N /;m2.N /; : : : at which an exceptional behavior occurs (see Section 1.2 for more infor-
mation). This tells only a part of what is going on: for each fixed k, mk.N / � N (and
actually, much smaller than N ˛ for some ˛ < 1), and [9] does not tell what happens for
boxes with bigger length (and for the full-lattice process).

In the present paper, which uses and develops considerably more sophisticated results
about the percolation phase transition, we explore this unknown “territory”. Throughout
the paper, we work with a site version of frozen percolation, on the triangular lattice T (we
do this because site percolation on T is the planar percolation process for which the most
precise results are known, as discussed below). This lattice has vertex set

V.T/ D fx C ye�i=3 2 C W x; y 2 Zg;

and edge set E.T/ obtained by connecting all pairs u; v 2 V.T/ for which ku � vk2 D 1.
If u; v 2 V.T/ are connected by an edge, that is, .u; v/ 2 E.T/, we say that u and v are
neighbors, and we write u � v.

The independent site percolation process on T can be described as follows. We consider a
family .�v/v2V.T/ of i.i.d random variables, with uniform distribution on Œ0; 1�. For p 2 Œ0; 1�,
we say that a vertex v is p-black (resp. p-white) if �v � p (resp. �v > p). Then, the vertices
are independently black or white, with respective probabilities p and 1 � p. We denote
by Pp the corresponding product measure. Vertices can be grouped into maximal connected
components (clusters) of p-black sites and p-white sites, which defines a partition of V.T/.
It is a celebrated result [22] that for all p � pc WD 1=2, there is a.s. no infinite p-black cluster,
while for p > pc , there exists a.s. a unique infinite p-black cluster. We refer the reader to [21]
for an introduction to percolation theory.

We now define the volume-frozen percolation process itself, based on the same collec-
tion .�v/v2V.T/. For a subset A � V.T/, its volume is the number of vertices that it contains,
denoted by jAj. Let G D .V;E/ be a subgraph of T, and N � 1 be a fixed parameter. At
time t D 0, we set all the vertices in V to be white, and as time t evolves from 0 to 1, each
vertex v 2 V can become black at time t D �v only: it is allowed to do so if and only if all
the black clusters touching v have a volume strictly smaller than N (otherwise, v stays white
until the end, i.e time t D 1). That is, black clusters are allowed to grow until their volume
is larger than or equal to N , when their growth is stopped: such a cluster is then said to be
frozen. Observe that it might be the case that a cluster never reaches volumeN , because it is
trapped in a small region surrounded by frozen clusters. We say that a black vertex is frozen
at a given time t if (at that time) it belongs to a frozen cluster (it is then frozen at all times
t 0 > t ). We use the notation P.G/N for the probability measure governing the process, and we
omit the graphG used when it is clear from the context. Note that this process is well-defined:
it can be seen as a finite range interacting particle system, thus general theory [31] provides
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