
BULLETIN DE LA S. M. F.

J.F. VOLOCH
A Diophantine problem on algebraic curves over
function fields of positive characteristic
Bulletin de la S. M. F., tome 119, no 1 (1991), p. 121-126
<http://www.numdam.org/item?id=BSMF_1991__119_1_121_0>

© Bulletin de la S. M. F., 1991, tous droits réservés.

L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf.
emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec
les conditions générales d’utilisation (http://www.numdam.org/legal.php).
Toute utilisation commerciale ou impression systématique est constitu-
tive d’une infraction pénale. Toute copie ou impression de ce fichier
doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=BSMF_1991__119_1_121_0
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://smf.emath.fr/Publications/Bulletin/Presentation.html
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Bull. Soc. math. France,

119, 1991, p. 121-126.

A DIOPHANTINE PROBLEM ON ALGEBRAIC
CURVES OVER FUNCTION FIELDS OF

POSITIVE CHARACTERISTIC

BY

J.F. VOLOCH (*)

RESUME. — Soit K un corps de fonctions d'une variable sur un corps fini de
caracteristique p. On determine les courbes algebriques sur K ayant une fonction
X-rationnelle dont leurs valeurs dans une infinite de points X-rationnels sont des
puissances p-emes. On en deduit la finitude de Pensemble des points rationnels des
courbes sur K qui changent de genre sous une extension de corps de base.

ABSTRACT. — Let K be a function field in one variable over a finite field of
characteristic p. We determine the algebraic curves over K having a 7^-rational function
on it whose value at infinitely many X-rational points is a p-th power. From this we
deduce the finiteness of the set of X-rational points of curves over K that change genus
under ground-field extension.

1. Introduction
Let K be a function field in one variable over a finite field of char-

acteristic p. The purpose of this paper is to characterize the algebraic
curves X / K and the rational functions / C K{X) such that /(P) C Kp

for infinitely many rational points P € X(K). This problem ties up with
a question left open by SAMUEL [2] in his extension to positive character-
istic of GRAUERT'S proof of MORDELL'S conjecture for function fields of
characteristic zero. The question occurs when the relative genus of X/K
is different from the absolute genus of X in the sense of [2] (or equivalently
when K(X) is a non-conservative function field in the sense of [1]).

The genus of a curve X defined over K, relative to K, can be defined as
follows. It is the integer g for which £(D) = degD + 1 — g , for divisors D,
defined over K, with degree degD sufficiently large, where £(D) is the
dimension, as a K-vecior space, of the space of rational functions on X,

(*) Texte recu Ie 4 mai 1990, revise Ie 13 septembre 1990.
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defined over K, with polar divisor bounded by D. The above definition of
the genus depends on K. The genus of X, relative to X, does not change
under separable extensions of K but may decrease under inseparable
extensions. The absolute genus of X is thus defined as the genus of X
relative to the algebraic closure of K. A standard example, for p > 3,
is the curve y2 = xp — a. If a € K\KP, then its genus, relative to K,
is j(p — 1) and its absolute genus is 0.

SAMUEL showed that, with notation as above, X(K) is finite if the
absolute genus of X is at least two [2, Chapitre III, Theorem 1 and app. 2]
and therefore the problem above is trivial for those curves. The question
left open by SAMUEL [2, page 3] is whether curves with relative genus at
least two and absolute genus 0 or 1 have finitely many rational points
and we solve this question in the affirmative. Note that we have shown
previously [4] that curves with relative genus 1 and absolute genus 0 have
finitely many rational points (this will also follow from THEOREM 1 below).
Hence all curves that admit genus change have finitely many rational
points.

The paper is organized as follows. In sections 2 and 3 we solve our basic
problem for rational curves and elliptic curves, respectively, and in section
4 we use these results to show that curves that admit genus change have
finitely many rational points. Finally, we obtain the general solution to
our problem.

2. Rational curves

Recall that K is a function field in one variable over a finite field of
characteristic p. Let t C K \ Kp and 6 = d/dt, a derivation of K. If re is a
variable over K, we extend S to K(x) by 6(x) = 0. We shall also use the
notation r6^) for the action of 6 on r(x) e K(x).

THEOREM 1. — Letr(x) C K(x) be a rational function such that the set

{a e K | r(a) e KP} is infinite. Then, there exists ( a ' ] e GL^K)

such that r((ax + /3)/(^x + 6)) e 7^(;r).

Proof. — Multiplying, if necessary, r(x) by the p-th power of its
denominator, we can assume that r(x) is a polynomial. Let n be the
degree of r(x) and assume first that p \ n.

Let r(x) = aox71 + ai.r71"1 + • • • + a^. By changing, if necessary, the
variable x to a^x, where mn + 1 = 0 (p), we can assume that ao C Kp.
Further, dividing r(x) by OQ, we can also assume that ao = 1. Finally,
changing x to x — ai/n, we can assume that ai = 0.
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If a € K is such that r(a) e K^\ then

(*) 0 = ^(r(a)) = r\a)6a + ̂ (a).

Note that r^(a) = ^as-^"2 + • • • + Scbn is of degree at most (n — 2).
If r6(x) is identically zero, then r(x) C -^[^], as desired. Assume then
that r^x) / 0.

Let v be a place of K with ^(a^) > 0, i = 0 , . . . ,n and v(dt) = 0.
If a 6 7^ is such that v(a) < 0 then, clearly, v(r6(a)) > (n — 2)'y(a) and
^(^(a)) = (n — l)'y(a), whence -y(^a) > 0, from (*). If v(a) > 0 then,
obviously, v(6a) > 0, as well. Thus v(6a) > 0 for all but finitely many
places of K.

Further, the rational function —r6(x)/rf(x) has a zero at infinity.
Thus, for any place v of K, if a has a sufficiently large pole at 0 then
6a = —r6(a)/rf(a) satisfies v(6a) >, 0, say. On the other hand, if v(a)
is bounded below, then v(6a) is also bounded below. The conclusion of
the above discussion is that there exists a divisor D of K such that
6a G L(D) for any a €. K with r(a) € Kp. Hence, 6a can assume
finitely many values & i , . . . , b^ for those a. The polynomial equations
r'{x)bi + r^rr) = 0, i = 1,..., N , have finitely many solutions unless one
of them is identically zero. In the latter case, looking at the coefficient
in re71"1, it follows that bz = 0 (recall that p \ n) and so r6(x) = 0,
contrary to the hypothesis. This proves the result when p \ n.

Let now r(x) be a polynomial of degree n = 0 (p) satisfying the
hypothesis of the theorem. Let a C K be such that r(a) € Kp. To prove
the theorem for r(x) it suffices to prove the theorem for the polynomial
^(^(Ifx + a) — r(a)), which has degree strictly less than n. The theorem
now follows by induction on n.

REMARK 1. — Let r(x) € K{x) be such that there exists ( a ' ) C

GL^K) with r((ax -h 0)/{^x + 6)) C KP{x). Then r(a) (E K? for
infinitely many a e ̂ . Indeed r^axP + /?)/(7^ + ^)) = (.s^)^ for some
s(x) € Jf(rc). This also shows that the curve y^ = r(x) is parametrizable
over K , that is, has relative genus zero over K .

REMARK 2. — THEOREM 1 contains, as special cases, the results of [4].
The proof of THEOREM 1 is an extension of the techniques of [4].
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3. Elliptic curves

We keep the notation of section 2. In particular, recall the derivation 6
of K. If E / K is an elliptic curve given by the Weierstrass equation
y2 + a^xy + a^y = x3 + a^x2 + 04 .r + OG, let E ^ / K be the elliptic
curve with Weierstrass equation y2 + a{xy + aj^/ == x3 + a^2 + a^ + ag
and F : E -^ E^ be the Frobenius map defined by F(x, y) = (xP, y10). Let
also V : E^ —^ E be the isogeny dual to F. We extend ^ to a derivation
on K(E^) = K(x,y) by 6(x) = 6(y) = 0. As in section 2 we also denote
by r6 the action of 6 on r C K(E^).

THEOREM 2. — Notation as above. If r C K(E^) is such that the set
{P e E^)(^) | r(P) e J^} %5 m/im^e, then there exists Po C E^\K)
such that the function P ^-> r(P + Po) belongs to KP{E^). If r C K(E)
is such that the set {P e E(K) | r(P) C ^p} z'5 infinite, then there exists
PO C E{K) such that the function P i-> r{V(P)+Po) belongs to KP(E^).

Proof. — Let r e K{E^) satisfy the hypothesis of the theorem. As
E ^ ( K ) / F { E { K ) ) is finite (by the Mordell-Weil theorem) it follows that
there exists Po G E^(K) such that, for infinitely many P c F(E(K)),
r(P + Po) e KP. Let s e K(E^) be defined by ^(P) = r(P + Po).
If P e F(E{K)), its x,y coordinates are p-th powers, hence 6(s(P)) =
5^(P). If, furthermore, s(P) C ^p then ^(P) = 0. But s6 has finitely
many zeros unless is identically zero. We therefore conclude that s6 = 0,
that is, 5 C KP{E^), as desired.

Let r C K(E) satisfy the hypothesis of the theorem. Again by Mordell-
Weil, E{K)/V{E^(K)) is finite : there exists Pi e E(K) such that there
exists infinitely many P e V(E^)(^)) with r(P + Pi) C ^p. Thus, the
function P ̂  r(y(P)+Pi) on E^\ satisfies the hypothesis of the theorem
and, by what was proved above, there exists ?2 such that the function
P ^ r(V(P + ?2) + Pi) belongs to KP{E^) and the theorem follows
with Po =Pi +V(P2).

REMARK 3. — If r e K(E^) is such that P ^ r(P + ?o) belongs
to KP(E^) for some Po C E^\K) then r(P) C KP for all P C E^\K),
P - PO C F(E(K)). Indeed r(F(P) + Po) = (^P))^ for some s e J^(E).
Thus the cover of E^ defined by the equation zP = r has genus 1 over K,
since it is covered by E by the map P i-̂  (F(P) + Po,5(P)). A similar
phenomenon occurs for r e K(E) such that P \-> r(V(P) + Po) belongs
to KP(E^). Indeed, r(pP + Po) = s(P)P for some s e J^(£1), since V o F
is multiplication by p on £'.
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