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POLES OF IGUSA'S LOCAL ZETA

FUNCTION AND MONODROMY

BY

WILLEM VEYS

RESUME. — Soit K une extension finie de Qp et R son anneau de valuation. On
associe a chaque / C K[x], avec x = ( r c i , . . . ,Xn), la fonction zeta locale d'lgusa

-/„Z(s)= \ l/MI'lda-l,
J Rn

qui est meromorphe sur C. La conjecture de monodromie associe des valeurs propres de
la monodromie (complexe) de Phypersurface / = 0 aux poles de Z(s). On peut exprimer
une liste de candidats-poles de Z(s) ainsi que les valeurs propres de la monodromie
a Paide de donnees numeriques de varietes exceptionelles, associees a une resolution
plongee de / == 0. En utilisant des relations entre ces donnees numeriques on montre
que certains candidats-poles ne contribuent pas aux vrais poles, ce qui entraine une
forte evidence concernant la conjecture.

ABSTRACT. — Let K be a finite extension of Qp and R its valuation ring. To any
/ G K[x], with x = (a- i , . . . ,Xn), is associated Igusa's local zeta function

Z(s)= I /Mi'ld^l,
^J^

which is known to be meromorphic on C. The monodromy conjecture relates poles
of Z(s) to eigenvalues of the (complex) monodromy of the hypersurface / = 0. Now we
can express both a list of candidate-poles for Z(s) and the monodromy-eigenvalues in
terms of certain numerical data of exceptional varieties, associated to an embedded
resolution of / = 0. Using relations between those numerical data we study the
vanishing of bad candidate-poles for Z(s) to obtain a lot of evidence for the conjecture.

(*) Texte recu Ie 23 juillet 1992.
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Belgium.
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Introduction

Let K be a number field and R its ring of algebraic integers. For any
maximal ideal p of R^ let J?p and Ky denote the completion of respectively
R and K with respect to the p-adic absolute value. Let \x denote this
absolute value for x G Kp, and let q be the cardinality of the residue
field K = R ^ / p R p . (For example if K = Q we have that p is determined
by a prime number p, then Kp is the field of p-adic numbers Qp and K is
the finite field with p elements.)

Let f(x) G K[x\^ with x = (a"i,... ^Xn-\-i)' Then Igusa's local zeta
function of / is defined by

Z(s)=Z,(s)= ( {fW^dx^
JR^

where \dx\ denotes the Haar measure normalized such that R^1 has
measure one. It describes the Poincare series

CO

P(T)=^N,(q-^T)\
1=0

where A^, with i C N, is the number of solutions of / == 0 in the
ring J?p/p^p, through the relation

Z{s)=(l-qs)P(q-s)+qs.

IGUSA [Igl] proved that Z(s), and therefore also P(T), is a rational
function of q~8 = T.

One can compute Z(s} using an embedded resolution with normal
crossings for / = 0 in A^^dy), where Q" is the algebraic closure
of Q. (An explicit formula of DENEF [Dl] is stated in THEOREM 1.2.)
Let (X, h) be such a resolution, obtained by Hironaka's main theorem [Hi],
and denote by Ei, with i G 6', the (reduced) irreducible components
of /^(/^{O}). We associate to each Ei, i G 6', a pair of numerical
data (Ni^fi) where N1 and (yi — 1) are the multiplicities of E^ in the
divisor of respectively f o h and /i*(da;i A • • • A drc^+i) on X.

In particular all real poles of Z{s) are part of the set {—yi/Ni i C S}.
So determining the real poles consists in throwing away the bad candi-
dates. Now it is striking that «most» candidate-poles are actually bad.
This fact would be elucidated if the following monodromy conjecture
is true.
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CONJECTURE.—For all except a finite number ofp we have that^ ifs is
a pole o/Zp(s), then e^^5) is an eigenvalue of the monodromy acting
on the cohomology (in some dimension) of the Milnor fiber off associated
to some point of the hypersurface f = 0.

We explain this more in detail. (For the concept of monodromy we
0

refer to MILNOR [Mi]). Fix an exceptional variety Ej and set Ej =
^3 \ (U^ • ̂ ') ^or ^y scheme V of finite type over K let ^(V) denote
the Euler-Poincare characteristic of V(C). Suppose that v^ and Nj are
coprime and that there is no Ei, with i G 6' \ {j}, with Nj \ N^. The
monodromy conjecture implies, for all except a finite number of prime
ideals p, that s = -i^j/Nj is no pole of Z(s) if xf^j) = °- (We illustrate

0

this in paragraph 2.) Now in any concrete example we have that x(Ej) = 0
for « most)) exceptional varieties Ej.

IGUSA [Ig5] tested the monodromy conjecture for relative invariants
of certain reductive groups. LOESER verified it for arbitrary polynomials
in two variables [LI], and for polynomials which are non-degenerate
with respect to their Newton polyhedron, assuming certain additional
conditions [L3]. We should also mention that the archimedean analogon
of the conjecture has been proved by MALGRANGE [Mal], [Ma2].

In this paper we are interested in the vanishing of bad candidate-poles
for Z{s) to obtain more evidence for the monodromy conjecture, using
relations between the numerical data of the resolution (X, h) for / = 0.
Considering the formula for Z(s) of THEOREM 1.2, it is clear that relations
between the numerical data of Ej and of the Ei, i € S \ {j}, that inter-
sect Ej are very useful to make conclusions about the residue of — i / j / N j .

Relations. — In [V2] we proved for arbitrary polynomials / relations
between numerical data, which we state briefly in paragraph 0. We now
explain the essential aspects of those relations.

Fix one exceptional variety E with numerical data (TV, v). The variety E
in the final resolution X is in fact obtained by a finite succession of
blowing-ups

E^^-E1^— . . . E ^ ^ — E W - • ^Zl-Ern-l^——Ern=E

with irreducible nonsingular center in E^ and exceptional variety Q+i C
£^+1 for i = 0 , . . . . m — 1. The variety E° is created at some stage of the
global resolution process as the exceptional variety of a blowing-up with
center D and is isomorphic to a projective space bundle II : E° -^ D
over D.
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There are two kinds of intersections of E with other components
of ^"^/"^O}). We have the repeated strict transforms ^m),..., C^
in E of the exceptional varieties C\,..., Cm '-, and furthermore we have
the repeated strict transforms C ^ ' in E of varieties Q, with i e T,
(of codimension one) in £^°.

For each ? e TU{1 , . . . , m} the strict transform C[ of Q in E is (an ir-
reducible component of) the intersection of E with exactly one other com-
ponent of ^^(/^{O}). Let this component have numerical data (N1,1/1)
and set ai = vi — ( u / N ) N i . (The numbers o ^ z C T L ^ l , . . . , m}, occur
in the expression for the residue of the candidate-pole — y / N for Z[s)^
see THEOREM 1.2.)

There are basic relations (Bl and B2) between the o^, i C T, and there
is for each z e { 0 , . . . ,m — 1} an additional relation (A) expressing o^+i
in terms of the a/c for A* c r u { l , . . . , ? } .

For the applications on the poles of Z(s), we choose the number field K
«large enough)), meaning that the resolution (X, h) over Q" is entirely
defined over K itself.

0

We now suppose that the fixed exceptional variety E satisfies \{E} = 0
and that there is no Ei, with i 6 5'\{j'}, intersecting E with V i / N i = u / N .
Denote by K the contribution of E to the residue of the candidate-
pole - y / N for Z(s).

Surfaces. — When n = 2, the surface E° is created by blowing-up
a point or a nonsingular curve D. In the first case E° ^ P2 and in the
latter E° is a ruled surface II : E° —^ D over D.

By the formula for Z(s) of THEOREM 1.2 we can express K in this

case as follows. Set d= C^ \ \J^ C^ and a, = v, - ^ / N ) N , for
i G T U { ! , . . . , m}. Then

7Z=card^
card Ci+ ( ^ - i ) E q^ - 1ieru{i,...,m}

card^^ UCJ^)
+ ( < 7 - I ) 2 T ^^ "^ -T v y / ^ (g^- l ) (g^- l )

{zJ}CTU{l,...,m} w Ay /

^j
0 0

where card E and card Ci are the number of K -rational points of the
0 0

reduction of respectively E and Ci modulo fRp.
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