BULLETIN DE LA S. M. F.

WILLEM VEYS Poles of Igusa's local zeta function and monodromy

Bulletin de la S. M. F., tome 121, nº 4 (1993), p. 545-598 <http://www.numdam.org/item?id=BSMF_1993__121_4_545_0>

© Bulletin de la S. M. F., 1993, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

POLES OF IGUSA'S LOCAL ZETA FUNCTION AND MONODROMY

BY

WILLEM VEYS

RÉSUMÉ. — Soit K une extension finie de \mathbb{Q}_p et R son anneau de valuation. On associe à chaque $f \in K[x]$, avec $x = (x_1, \ldots, x_n)$, la fonction zêta locale d'Igusa

$$Z(s) = \int_{\mathbb{R}^n} |f(x)|^s |\,\mathrm{d}x|,$$

qui est méromorphe sur \mathbb{C} . La conjecture de monodromie associe des valeurs propres de la monodromie (complexe) de l'hypersurface f = 0 aux pôles de Z(s). On peut exprimer une liste de candidats-pôles de Z(s) ainsi que les valeurs propres de la monodromie à l'aide de données numériques de variétés exceptionelles, associées à une résolution plongée de f = 0. En utilisant des relations entre ces données numériques on montre que certains candidats-pôles ne contribuent pas aux vrais pôles, ce qui entraîne une forte évidence concernant la conjecture.

ABSTRACT. — Let K be a finite extension of \mathbb{Q}_p and R its valuation ring. To any $f \in K[x]$, with $x = (x_1, \ldots, x_n)$, is associated Igusa's local zeta function

$$Z(s) = \int_{\mathbb{R}^n} \left| f(x) \right|^s |\,\mathrm{d}x|,$$

which is known to be meromorphic on \mathbb{C} . The monodromy conjecture relates poles of Z(s) to eigenvalues of the (complex) monodromy of the hypersurface f = 0. Now we can express both a list of candidate-poles for Z(s) and the monodromy-eigenvalues in terms of certain numerical data of exceptional varieties, associated to an embedded resolution of f = 0. Using relations between those numerical data we study the vanishing of bad candidate-poles for Z(s) to obtain a lot of evidence for the conjecture.

^(*) Texte reçu le 23 juillet 1992.

W. VEYS, K.U. Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven, Belgium.

The author wants to thank the Department of Mathematics of the École Polytechnique at Palaiseau for its support during the preparation of this manuscript.

AMS classification : 11 S 40, 14 G 10.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037–9484/1993/545/5.00 © Société mathématique de France

Introduction

Let K be a number field and R its ring of algebraic integers. For any maximal ideal \mathfrak{p} of R, let $R_{\mathfrak{p}}$ and $K_{\mathfrak{p}}$ denote the completion of respectively R and K with respect to the \mathfrak{p} -adic absolute value. Let |x| denote this absolute value for $x \in K_{\mathfrak{p}}$, and let q be the cardinality of the residue field $\overline{K} = R_{\mathfrak{p}}/\mathfrak{p}R_{\mathfrak{p}}$. (For example if $K = \mathbb{Q}$ we have that \mathfrak{p} is determined by a prime number p, then $K_{\mathfrak{p}}$ is the field of p-adic numbers \mathbb{Q}_p and \overline{K} is the finite field with p elements.)

Let $f(x) \in K[x]$, with $x = (x_1, \ldots, x_{n+1})$. Then Igusa's local zeta function of f is defined by

$$Z(s) = Z_{\mathfrak{p}}(s) = \int_{R_{\mathfrak{p}}^{n+1}} \left| f(x) \right|^s |\mathrm{d}x|,$$

where |dx| denotes the Haar measure normalized such that $R_{\mathfrak{p}}^{n+1}$ has measure one. It describes the Poincaré series

$$P(T) = \sum_{i=0}^{\infty} N_i \left(q^{-(n+1)} T \right)^i,$$

where N_i , with $i \in \mathbb{N}$, is the number of solutions of f = 0 in the ring $R_p/\mathfrak{p}^i R_p$, through the relation

$$Z(s) = (1 - q^{s}) P(q^{-s}) + q^{s}.$$

IGUSA [Ig1] proved that Z(s), and therefore also P(T), is a rational function of $q^{-s} = T$.

One can compute Z(s) using an embedded resolution with normal crossings for f = 0 in $\mathbb{A}^{n+1}(\mathbb{Q}^a)$, where \mathbb{Q}^a is the algebraic closure of \mathbb{Q} . (An explicit formula of DENEF [D1] is stated in THEOREM 1.2.) Let (X, h) be such a resolution, obtained by Hironaka's main theorem [Hi], and denote by E_i , with $i \in S$, the (reduced) irreducible components of $h^{-1}(f^{-1}\{0\})$. We associate to each E_i , $i \in S$, a pair of numerical data (N_i, ν_i) where N_i and $(\nu_i - 1)$ are the multiplicities of E_i in the divisor of respectively $f \circ h$ and $h^*(dx_1 \wedge \cdots \wedge dx_{n+1})$ on X.

In particular all real poles of Z(s) are part of the set $\{-\nu_i/N_i \mid i \in S\}$. So determining the real poles consists in throwing away the bad candidates. Now it is striking that «most» candidate-poles are actually bad. This fact would be elucidated if the following *monodromy conjecture* is true.

томе $121 - 1993 - N^{\circ} 4$

CONJECTURE. — For all except a finite number of \mathfrak{p} we have that, if s is a pole of $Z_{\mathfrak{p}}(s)$, then $e^{2\pi i \operatorname{Re}(s)}$ is an eigenvalue of the monodromy acting on the cohomology (in some dimension) of the Milnor fiber of f associated to some point of the hypersurface f = 0.

We explain this more in detail. (For the concept of monodromy we refer to MILNOR [Mi]). Fix an exceptional variety E_j and set $\mathring{E}_j = E_j \setminus (\bigcup_{i \neq j} E_i)$ For any scheme V of finite type over K let $\chi(V)$ denote the Euler-Poincaré characteristic of $V(\mathbb{C})$. Suppose that ν_j and N_j are coprime and that there is no E_i , with $i \in S \setminus \{j\}$, with $N_j \mid N_i$. The monodromy conjecture implies, for all except a finite number of prime ideals \mathfrak{p} , that $s = -\nu_j/N_j$ is no pole of Z(s) if $\chi(\mathring{E}_j) = 0$. (We illustrate this in paragraph 2.) Now in any concrete example we have that $\chi(\mathring{E}_j) = 0$ for «most» exceptional varieties E_j .

IGUSA [Ig5] tested the monodromy conjecture for relative invariants of certain reductive groups. LOESER verified it for arbitrary polynomials in two variables [L1], and for polynomials which are non-degenerate with respect to their Newton polyhedron, assuming certain additional conditions [L3]. We should also mention that the archimedean analogon of the conjecture has been proved by MALGRANGE [Ma1], [Ma2].

In this paper we are interested in the vanishing of bad candidate-poles for Z(s) to obtain more evidence for the monodromy conjecture, using relations between the numerical data of the resolution (X, h) for f = 0. Considering the formula for Z(s) of THEOREM 1.2, it is clear that relations between the numerical data of E_j and of the E_i , $i \in S \setminus \{j\}$, that intersect E_j are very useful to make conclusions about the residue of $-\nu_j/N_j$.

Relations. — In [V2] we proved for arbitrary polynomials f relations between numerical data, which we state briefly in paragraph 0. We now explain the essential aspects of those relations.

Fix one exceptional variety E with numerical data (N, ν) . The variety E in the final resolution X is in fact obtained by a finite succession of blowing-ups

$$E^{0} \xleftarrow{\pi_{0}} E^{1} \xleftarrow{\pi_{1}} \cdots E^{i} \xleftarrow{\pi_{i}} E^{i+1} \cdots \xleftarrow{\pi_{m-2}} E^{m-1} \xleftarrow{\pi_{m-1}} E^{m} = E$$

with irreducible nonsingular center in E^i and exceptional variety $C_{i+1} \subset E^{i+1}$ for $i = 0, \ldots, m-1$. The variety E^0 is created at some stage of the global resolution process as the exceptional variety of a blowing-up with center D and is isomorphic to a projective space bundle $\Pi : E^0 \to D$ over D.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

There are two kinds of intersections of E with other components of $h^{-1}(f^{-1}\{0\})$. We have the repeated strict transforms $C_1^{(m)}, \ldots, C_m^{(m)}$ in E of the exceptional varieties C_1, \ldots, C_m ; and furthermore we have the repeated strict transforms $C_i^{(m)}$ in E of varieties C_i , with $i \in T$, (of codimension one) in E^0 .

For each $i \in T \cup \{1, \ldots, m\}$ the strict transform $C_i^{(m)}$ of C_i in E is (an irreducible component of) the intersection of E with exactly one other component of $h^{-1}(f^{-1}\{0\})$. Let this component have numerical data (N_i, ν_i) and set $\alpha_i = \nu_i - (\nu/N)N_i$. (The numbers $\alpha_i, i \in T \cup \{1, \ldots, m\}$, occur in the expression for the residue of the candidate-pole $-\nu/N$ for Z(s), see THEOREM 1.2.)

There are basic relations (B1 and B2) between the $\alpha_i, i \in T$, and there is for each $i \in \{0, \ldots, m-1\}$ an additional relation (A) expressing α_{i+1} in terms of the α_k for $k \in T \cup \{1, \ldots, i\}$.

For the applications on the poles of Z(s), we choose the number field K «large enough», meaning that the resolution (X, h) over \mathbb{Q}^a is entirely defined over K itself.

We now suppose that the fixed exceptional variety E satisfies $\chi(\stackrel{\circ}{E}) = 0$ and that there is no E_i , with $i \in S \setminus \{j\}$, intersecting E with $\nu_i/N_i = \nu/N$. Denote by \mathcal{R} the contribution of E to the residue of the candidatepole $-\nu/N$ for Z(s).

Surfaces. — When n = 2, the surface E^0 is created by blowing-up a point or a nonsingular curve D. In the first case $E^0 \cong \mathbb{P}^2$ and in the latter E^0 is a ruled surface $\Pi : E^0 \to D$ over D.

By the formula for Z(s) of THEOREM 1.2 we can express \mathcal{R} in this case as follows. Set $\overset{\circ}{C}_i = C_i^{(m)} \setminus \bigcup_{\ell \neq i} C_\ell^{(m)}$ and $\alpha_i = \nu_i - (\nu/N)N_i$ for $i \in T \cup \{1, \ldots, m\}$. Then

$$\begin{aligned} \mathcal{R} &= \operatorname{card} \ddot{E} \\ &+ (q-1) \sum_{i \in T \cup \{1, \dots, m\}} \frac{\operatorname{card} \mathring{C}_i}{q^{\alpha_i} - 1} \\ &+ (q-1)^2 \sum_{\substack{\{i, j\} \subset T \cup \{1, \dots, m\}\\ i \neq j}} \frac{\operatorname{card}(C_i^{(m)} \cap C_j^{(m)})}{(q^{\alpha_i} - 1)(q^{\alpha_j} - 1)}, \end{aligned}$$

where $\operatorname{card} \overset{\circ}{E}$ and $\operatorname{card} \overset{\circ}{C}_i$ are the number of \overline{K} -rational points of the reduction of respectively $\overset{\circ}{E}$ and $\overset{\circ}{C}_i$ modulo $\mathfrak{p}R_{\mathfrak{p}}$.

томе 121 — 1993 — n° 4