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THE THEORY OF DIFFERENTIAL INVARIANTS

AND KDV HAMILTONIAN EVOLUTIONS

BY GLORIA MARI BEFFA (*)

ABSTRACT. — In this paper I prove that the second KdV Hamiltonian evolution
associated to SL(n, R) can be view as the most general evolution of projective
curves, invariant under the SL(n,R)-projective action on RP"'"1, provided that certain
integrability conditions are satisfied. This way, I establish a very close relationship
between the theory of geometrical invariance, and KdV Hamiltonian evolutions. This
relationship was conjectured in [4].

RESUME. — LA THEORIE DES INVARIANTS DIFFERENTIELS ET LES EVOLUTIONS
HAMILTONIENNES DE KDV. — Dans cet article, je prouve que la seconde evolution
hamiltonienne de KdV, associee au groupe SL(n,R), peut etre consideree comme
1'evolution la plus generale des courbes projectives qui sont invariantes par Faction
projective de SL(n, R) sur RP71"1, si une certaine condition d'integrabilite est satisfaite.
Je mets alors en evidence une connection tres etroite entre la theorie d'invariance
geometrique et les evolutions hamiltoniennes de KdV. Cette relation a ete conjecturee
en [4].

1. Introduction
Consider the following problem: Let ( / ) ( t ^ 0 ) € MP^"1 be a family

of projective curves. We ask the following question: is there a formula
describing the most general evolution for 0 of the form

^=F(^^^...)

invariant under the projective action of SL(n,R) on RP72"1? Here

,/ / d0 / d<^0 =^e=^. ^ - d T
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The projective action of SL(n,R) on RP7'"1 is the one induced on W"1

by the usual action of SL(n, R) on R71 via the lift

ron—l •(i ,^) .
As we showed in [4], such a formula can be found using the theory of
projective differential invariance. In fact, one can prove that any evolution
of projectives curves which is invariant under SL(n,R) can always be
written as

(1.1) rf>t=^

where 1 is a vector of differential invariants for the action and ji is a
particular (fixed) matrix of relative invariants^ whose explicit formula was
found in [4]. Roughly speaking, if a group G acts on a manifold M, one
can define an action of the group on a given jet bundle J^ of order k,
where J^ is the set of equivalence classes of submanifolds modulo border
contact. This action, in coordinates looks like

GxJ^^jW,

(g,uK) •—^ (gu)K,
for any differential subindex K of order less or equal to A:, and it is called
the prolonged action. A differential invariant is a map

j: jW _, ̂

which is invariant under the prolonged action. A relative differential
invariant is a map

j: jW _, ̂

whose value gets multiplied by a factor under the prolonged action. The
factor is usually called the multiplier. In our particular case, their infini-
tesimal definitions are given in the second part of section 2. Differential
invariants and relative invariants are the tools one uses to describe inva-
riant evolutions.

These two concepts belong to the theory of Klein geometries and
geometric invariants which had its high point last century before the
appearance of Cartan's approach to differential geometry. It is also
closely related to equivalence problems. Namely, one poses the question
of equivalence of two geometrical objects under the action of a certain
group, that is, when can one of those objects be taken to the other one
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using a transformation belonging to the given group? For example, given
two curves on the plane, when are they equivalent under an Euclidean
motion? or, when are they the same curve, up to parametrization? etc. One
answer can be given in terms of invariants, that is, expressions depending
on the objects under study and that do not change under the action
of the group. If two objects are to be equivalent, they must have the
same invariants. If these invariants are functions on some jet space (for
example, if they depend on the curve and its derivatives with respect to
the parameter), then they are called differential invariants. In the case of
curves on the Euclidean plane under the action of the Euclidean group,
the basic differential invariant is known to be the Euclidean curvature,
and any other differential invariant will be a function of the curvature
and its derivatives. In the case of immersions

with SL(2,M) acting on MP1, the basic differential invariant is classically
known to be the Schwarzian derivative of 0,

^/. r 3/0'Y
sw=~^~2(~^) '

Within the natural scope of the study of equivalence problems and their
invariants lies also the description of invariant differential equations,
symmetries, relative invariants, etc. For example, recently Olver et al. [12]
used these ideas to characterize all scalar evolution equations invariant
under the action of a subgroup of the projective group in the plane, a
problem of interest in the theory of image processing. See Olver's book [11]
for an account of the state of the subject.

A subject apparently unrelated to the Theory of differential invariance
is the subject of Hamiltonian structures of partial differential equations,
integrability and, in general, of infinite dimensional Poisson structures.
The so-called KdV Poisson brackets lie within this area. These brackets
were defined by Adier [1] in an attempt to generalize the bi-Hamiltonian
character of the Korteweg-deVries (KdV) equation and its integrability.
He defined a family of second Hamiltonian structures with respect to
which the generalized higher-dimensional KdV equations could also be
written as Hamiltonian systems. JacobFs identity for these brackets was
proved by GePfand and Dikii in [3]. These Poisson structures are called
second Hamiltonian KdV structures or Adier- Gel Jand- Dikii brackets^ and
they are defined on the manifold of smooth Lax operators. Since the
original definition of Adier was quite complicated and not very intuitive,
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alternative definitions have been subsequently offered by several authors,
most notably by Kupershmidt and Wilson in [7], and by DrinfePd and
Sokolov in [2]. Once the second Hamiltonian structure was found, the
integrability of generalized KdV equations was established via the usual
construction of a sequence of Hamiltonian structures with commuting
Hamiltonian operators. In this paper I will restrict to the case of the
SL(n,R) AdIer-GePfand-Dikii bracket, although brackets have been given
for other groups (DrinfePd and Sokolov described their definition for
any semisimple Lie algebra). The second Hamiltonian Structure in this
hierarchy of KdV brackets coincides with the usual second Poisson bracket
for the KdV equation, that is, the canonical Lie-Poisson bracket on the
dual of the Virasoro algebra. This is the only instance in which the
second KdV bracket is linear.

The relationship between Lax operators (scalar n-th order ODE's) and
projective curves was established by the classics and clearly described by
Wilczynski in [13]. More recently (see [12]) the topology of these curves
was used to identify one of the invariants of the symplectic leaves of
the AdIer-GePfand-Dikii Poisson foliation. Some comments with respect
to the role of projective curves in these brackets can be found in [14]
and [7]. In [4] it was conjectured that the second KdV Hamiltonian
evolution and the general evolution for projective curves (1.1) found
in [4] were, essentially, the same evolution under a 1-to-l (up to SL(n,]R)
action) correspondence between Lax operators and projective curves. The
only condition that needed to be imposed was that certain invariant
combination of the components of the invariant vector Z in (1.1) should
be integrable to define the gradient of certain Hamiltonian operator (one
can even describe the evolution so that both I and Hamiltonian coincide
after the identification).

In this paper I prove this conjecture. Namely, I prove that there exists
an invariant matrix M, invertible, such that, ifHis the pseudo-differential
operator associated to an operator 7^, and if

H=MI
then, whenever (f) evolves following (1.1) with general invariant vector Z,
then their associated Lax operators (associated in the sense of [4] and
described again in the next chapter) will evolve following an AGD-
evolution with Hamiltonian operator H. I also prove the conjectured
shape of M., namely, lower triangular along the transverse diagonal with
ones down the transverse diagonal and zeroes on the diagonal inmediately
below the transverse one. The proof is based on a manipulation ofWilson's
antiplectic pair for the GL(?2, R)-AGD bracket and on the comparison of
the resulting formulas with the invariant formulas (1.1).
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