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COMPARING HEAT OPERATORS THROUGH LOCAL

ISOMETRIES OR FIBRATIONS

BY MANLIO BORDONI (*)

ABSTRACT. — Our aim is to generalize and improve the Kato's inequality, which compares
the trace of the heat kernel of a compact Riemannian manifold with the one of a finite-
sheeted covering of it. A comparison with the heat kernel of a suitable space-form gives, as a
consequence, an analogous of Kato's inequality for non compact manifolds, which improves the
classical inequality when the manifolds are compact. We get another generalization for local
isometries, which are no more supposed to be covering maps (as a typical example, we apply
this to the exponential map). Last, we consider Riemannian submersions with minimal fibers.

RESUME. — COMPARAISON ENTRE OPERATEURS DE LA CHALEUR PAR ISOMETRIES
LOCALES OU FIBRATIONS. —Notre but est de generaliser et d'ameliorer Pinegalite de Kato, qui
compare la trace du noyau de la chaleur d'une variete riemannienne compacte donnee a celle
d'un revetement riemannien fini de la variete. Une comparaison avec Ie noyau de la chaleur
d'une variete simplement connexe de courbure constante convenablement choisie donne, comme
consequence, un analogue de Pinegalite de Kato qui ameliore Pinegalite classique quand Ie
revetement n'est pas compact. On obtient une generalisation dans Ie cas ou les varietes sont
reliees par une isometrie locale (qui n'est pas obligatoirement un revetement, un exemple
typique etant donne par Papplication exponent ielle). Enfin, on traite Ie cas des submersions
riemanniennes a fibres minimales.

1. Introduction
Let (M, g) be any connected Riemannian manifold of finite dimension n. Let

us denote by AM = ^(M,g) tne Laplace-Beltrami operator acting on functions
and let us consider the heat equation:

(1-1) (^^^t^^0'
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with Dirichlet or Neumann condition on the boundary if M has a nonempty
boundary QM. The corresponding heat kernel will be denoted by pM(t^x^y)
when the boundary is empty, p^{t^ x^ y) or p^(t, x^ y) resp. when the boundary
condition is Dirichlet's or Neumann's one. For a non compact manifold, we shall
consider pM to be the unique minimal heat kernel, i.e. the limit of the Dirichlet
heat kernels of regular compact domains exhausting M; if M is complete and
if its Ricci curvature is bounded from below, then PM is the unique heat kernel
on M (see [9, p. 189]). If M is compact, the spectrum of AM is a discrete sequence
{A^(M)}^=o,i,2,... (each eigenvalue is repeated according to its finite multiplicity);
in this case, we shall also consider the trace ZM(I) of the heat operator e~^Mt

(with positive t):
+00

ZM(t)=^e-x^t

1=0

and similar expressions for Zj^(t) and Z^(t).
Given a mapping /: (M', g ' ) -—> (M, ̂ ), our aim is to compare the heat kernels

of the two manifolds, under suitable assumptions for /. It turns out that a good
assumption is that / satisfies the following Fubini ' s property for every continuous
function u on M'\

(1.2) / u{xf)dvg^xf)= { / u\f-i^(y)dvg^(y)\dvg(x)
J M' J M ^Jf-1^) )

where Vg^Vg are the measures canonically associated to the metrics g ' ^ g ^
and where Vgi denotes the measure associated to the metric g^ induced on
F,=/-1(^W.

Notice that, by Sard's theorem, if / is smooth on the outside V of a closed
subset of measure zero in M', and if dim M' > dim M, then the intersection of F^
with U ' is a submanifold for almost every x, so that the integrals which occur
in the formula (1.2) make sense. By the coarea formula (see [8, thm. 13.4.2]),
this may be extended to the case where / is only a Lipschitz map. In this
case, the differential dfx' exists for a.e. x ' and, considering its restriction to the
orthogonal complement H^ of ^/(F^/)) in T^M'', we may define its Jacobian
as the determinant of this restriction. By Corollary 13.4.6 of [8], condition (1.2)
is, in this case, equivalent to saying that this Jacobian is a.e. equal to ±1. The
property (1.2) is automatically satisfied for instance by Riemannian submersions
and coverings, or by local isometries.

If / is a fibration of compact manifolds with typical fiber F^ the so called
Kato's inequality compares the trace of the heat operator on (M7, g ' ) with the one
of the trivial fibration with the same typical fiber F. P. Berard and S. Gallot [1]
and in a different way G. Besson [4] show that, if / is a Riemannian submersion of
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compact boundaryless manifolds, whose fibers are totally geodesic submanifolds
of M', then

(1.3) ZM'W ^ ZMXFW = ZM(t) • Zp(t)^
in particular, if / is a regular ^-sheeted Riemannian covering, one obtains:

(1.4) Z M ' ( t ) < ^ Z M ( t )

(see also [22]); they also show that the inequality in (1.3) is an equality if and only
if / is the trivial fibration. The inequality (1.4) was extended by J. Tysk [30] to
a branched covering whose singularity set is a submanifold of M' of codimension
at least 2.

In Section 2, we consider any mapping /:(M',p') —^ (M,^) which is locally
isometric. In this case, Fubini's property is automatically satisfied. Most of the
difficulties come from the fact that we don't assume that / is a covering map.
A typical example is given by the exponential map, which is a local isometry on
an open set in the tangent space (endowed with the pull-back metric), but not a
covering. We show (Prop. 2.4) that the series ^-y/^-i/ ^ p M ' ^ t j X ' \ y ' ) converges
in the sense of distributions, and that its limit is not greater than pM^t^ f ( x ' ) ^ y ) .

To obtain the equality case for boundaryless manifolds, we must assume that
the manifolds are stochastically complete (Prop. 2.12); in this case, the sum of
the series does not depend on x ' 6 M' but only on /(^/) G M. Remember
that a Riemannian manifold {X,g) is stochastically complete if and only if
f ^ p x ( t ^ x ^ y ) d v g ( y ) = 1 for any x G X and for any t > 0. A geometrical
sufficient condition on a complete manifold (X, g) to be stochastically complete
concernes the volume of geodesic balls (Grigor'yan theorem 2.9, see [20] and [21]
for the proof).

In the case of manifolds with boundary, notice that, when Mf has a nonempty
boundary, the fact that M' is complete does not imply that M' is geodesically
complete. In this case we show (Lemmas 2.2 and 2.3) a weak Hopf-Rinow
theorem, and we prove that the restriction of / to the interior of M1 is a covering
map onto the interior of M. Proposition 2.4 also gives a sharp lower bound of
the Dirichlet heat kernel pj^ in terms of sums of^^/. To obtain the equality case
for manifolds with boundaries (Prop. 2.15), we must assume that / maps the
boundary of M' onto the boundary of M, that M' is a complete metric space
and that it satisfies the condition of Grigor'yan theorem 2.9.

When / is a ^-sheeted Riemannian covering of compact manifolds, we obtain
(Cor. 2.18) a first improvement of Kato's inequality (1.4), in which appears
explicitely the difference between £ • ZM^I) and ZM'(^}- We obtain also a
comparison between the heat kernels of M' and M in the case where / is
not a covering map and, as a typical example, when / is the exponential map
(Prop. 2.20, 2.22); this gives an estimate of the heat kernel of a manifold in
terms of a computable euclidean one.
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It is well known that the heat kernel ?MK (^ ^(b • ) of the space-form (MK^K)
of constant curvature J^ only depends on t and on the distance from XQ.
There are many works where a pointwise comparison between the heat kernel
of a manifold (M,^) and the heat kernel of (MK^K) is established, under
suitable assumptions on the curvature of (M, g) (see for instance J. Cheeger
and S.T.Yau [10], A. Debiard, B. Gaveau, E. Mazet [15], G. Courtois [11]). We
give (Theorem 2.25) a unified proof of these results by clarifying the role played
by the different singularities of the Laplacian of the functions which is obtained
by transplantation of the heat kernel of MK-, extended by a constant outside a
ball. By combining these results with the ones of Section 2, we obtain an effective
improvement of Kato's inequality in the Corollaries 2.26, 2.27. The inequalities
which appear in the corollaries are sharp (they are for example equalities in
the case of the 2-sheeted covering of the real projective space by the standard
sphere). These inequalities remain valid when the fibers have infinite cardinality.

In the case that f ' . ^ M ' . g ' ) -^ (M,g) is a Riemannian submersion with
minimal fibers (the manifolds are now assumed to be compact and boundary less),
we obtain that the resolvent and heat operators on M dominate the resolvent
and heat operators on M' respectively (Prop. 3.6). To prove this result, we show
that the mapping w from H^M1) in H-^(M) which sends u on wu, where wu(x)
is the I^-norm of u on -Fr, is a symmetrization in the sense of G. Besson [5],
which obeys a Kato-type inequality with respect to the Laplacians (Def.3.2):
then a generalized Beurling-Deny principle (3.3) gives the result.

ACKNOWLEDGEMENTS. —The author is grateful to S. Gallot for the "heat" of
his welcome and for stimulating suggestions, and to G. Besson for the sharpness
of his remarks on this text.

2. Kato's inequality for local (quasi) isometries and applications

a) Some topological remarks.
Let f : X / — ^ X b e any local homeomorphism from a Hausdorff topological

space Xf to a topological space X. The unique lift lemma is then valid, in the
sense that the continuous lift passing through some point of X' of any continuous
mapping 7:V —> X, where Y is a connected topological space, when it exists,
is unique. The proof is the classical one: let c\^c^'.Y —> X' be two continuous
mappings satisfying c^yo) = 02(2/0) for some yo € Y and / o c i = 7 = / o c 2 .
The set of y C Y such that c\ (y) = c^ (y) is closed and open because / is locally
injective and X' is Hausdorff.

If / is such that any continuous path 7:[0,1] —> X admits a continuous lift
c:[0,1] —> X' beginning at any x/ e /"^(O)), and if X is arcwise connected,
then all the fibers f~l(x) have the same cardinality: for x\,x^ e X, let us fix
a path 70 from a-i to x^. The mapping f~l(x^) —> f~l{x^), which sends
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