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PROFILE DECOMPOSITION FOR SOLUTIONS OF THE
NAVIER-STOKES EQUATIONS

by Isabelle Gallagher

Abstract. — We consider sequences of solutions of the Navier-Stokes equations in R3,
associated with sequences of initial data bounded in Ḣ1/2. We prove, in the spirit of
the work of H. Bahouri and P. Gérard (in the case of the wave equation), that they can

be decomposed into a sum of orthogonal profiles, bounded in Ḣ1/2, up to a remainder
term small in L3; the method is based on the proof of a similar result for the heat
equation, followed by a perturbation–type argument. If A is an “admissible” space (in

particular L3, Ḃ
−1+3/p
p,∞ for p < +∞ or ∇BMO), and if BA

NS
is the largest ball in A

centered at zero such that the elements of Ḣ1/2 ∩BA
NS

generate global solutions, then
we obtain as a corollary an a priori estimate for those solutions. We also prove that
the mapping from data in Ḣ1/2 ∩ BA

NS
to the associate solution is Lipschitz.
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Résumé (Décomposition en profils pour les solutions des équations de Navier-Stokes)
On considère des suites de solutions des équations de Navier–Stokes dans R3, as-

sociées à des suites de données initiales bornées dans Ḣ1/2. On montre, dans l’esprit
du travail de H. Bahouri et P. Gérard (dans le cas de l’équation des ondes), qu’elles

peuvent être décomposées en une somme de profils orthogonaux, bornés dans Ḣ1/2,
à un terme de reste près, petit dans L3 ; la méthode s’appuie sur la démonstration
d’un résultat analogue pour l’équation de la chaleur, suivi d’un argument de pertur-

bation. Si A est un espace « admissible » (en particulier L3, Ḃ
−1+3/p
p,∞ pour p < +∞

ou ∇BMO), et si BA
NS

est la plus grande boule de de A centrée en zéro, telle que les

éléments de Ḣ1/2 ∩ BA
NS

génèrent des solutions globales, alors on obtient en corollaire
une estimation a priori pour ces solutions. On montre aussi que l’application associant
une donnée dans Ḣ1/2 ∩ BA

NS
à sa solution est lipschitzienne.

1. Introduction

We are interested in the incompressible Navier-Stokes equations in three
space dimensions

(NS)

∂tv + v · ∇v − ν∆v = −∇p in R
+
t × R

3
x,

div v = 0 in R
+
t × R

3
x,

v|t=0 = v0,

where v0 is a divergence free vector field, v(t, x) and p(t, x) are respectively
the velocity and the pressure fields of the fluid, and ν > 0 is the viscosity.
The velocity is a three-component vector field, and the pressure is a scalar
field. The divergence free condition on v represents the incompressibility of
the fluid. Here t and x are respectively the time and the space variables,
with t ∈ R

+ and x ∈ R
3. All the results stated here hold in the more general

case of x ∈ R
d, d ≥ 3, with obvious adaptations, namely in the orders of the

functional spaces considered.
In order to motivate our study, let us recall a few well–known facts concerning

the system (NS). The most important results about the Cauchy problem were
obtained by J. Leray in [21], who proved that for divergence free data v0 ∈
L2(R3), there is a global, weak solution v of (NS) with

v ∈ L∞(
R
+, L2(R3)

)
∩ L2

(
R
+, Ḣ1(R3)

)
,

where Lp(R3) denotes the usual Lebesgue space of order p, and where we have
noted Ḣs(R3) the homogeneous Sobolev space of order s, defined by

∀s <
3
2

, Ḣs(R3) def==
{
u ∈ S′(R3); ‖u‖Ḣs(R3) < +∞

}
,

where

‖u‖Ḣs(R3)

def==
( ∫

R3
|ξ|2s

∣∣û(ξ)
∣∣2dξ

)1/2

,
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and û is the Fourier transform of u. We will note (· | ·)Ḣs(R3) the scalar product
in Ḣs(R3). The restriction s < 3

2 is for ‖u‖Ḣs(R3) to be a norm and not a
semi-norm. Note that the inhomogeneous Sobolev space Hs(R3) is of course
defined in the same way, where |ξ|2s is replaced by (1+ |ξ|2)s. In the following,
we will call Ḣ3/2(R3) the space of vector fields whose components have first
derivatives in Ḣ1/2(R3).

The solutions constructed by J. Leray satisfy moreover the energy inequality

(1.1) ∀t ≥ 0,
∥∥v(t)

∥∥2
L2(R3)

+ 2ν
∫ t

0

∥∥∇v(s)
∥∥2
L2(R3)

ds ≤ ‖v0‖2L2(R3).

Those solutions are not known to be unique (except in two space dimensions);
many studies exist on that problem of uniqueness, and the starting point of
our study will be the result of H. Fujita and T. Kato [8]. It can be stated in
the following way (see [4] for instance): if v0 is in Ḣ1/2(R3), then there exists
a unique maximal time T∗ > 0 and a unique solution v associated with v0
such that

v ∈ C0
(
[0, T ], Ḣ1/2(R3)

)
∩ L2

(
[0, T ], Ḣ3/2(R3)

)
for all T < T∗.

Moreover, if T∗ < +∞, then we have

(1.2) lim
T→T∗

‖v‖L2([0,T ],Ḣ3/2(R3)) = +∞.

Furthermore, there exists a universal constant c such that

(1.3) ‖v0‖Ḣ1/2(R3) ≤ cν =⇒ T∗ = +∞,

and we have in that case, for any t ≥ 0,

(1.4)
∥∥v(t)

∥∥2
Ḣ1/2(R3)

+ ν

∫ t

0

∥∥v(s)
∥∥2
Ḣ3/2(R3)

ds ≤ ‖v0‖2Ḣ1/2(R3)
.

Finally it is well known (see for instance [21] or [7], Remark 10.3 (a)) that we
have the following weak-strong uniqueness result:

(1.5) ∀ v0 ∈ L2 ∩ Ḣ1/2(R3), NS(v0) satisfies (1.1),

where, as in the whole of this text, we have noted NS(v0) the unique solution
of (NS) associated with the initial data v0 ∈ Ḣ1/2(R3).

One important aspect to keep in mind in the study of (NS) is the scaling of
the equation. It is easy to check the following property: for any real number λ,

(1.6) v = NS(v0) ⇐⇒ vλ = NS(v0,λ),

with
vλ(t, x) def==λv(λ2t, λx) and v0,λ(x) def==λv0(λx).

Note that the Ḣ1/2(R3) norm is clearly conserved under the transformation
v0 �→ v0,λ· Many existence and uniqueness results have been obtained for data
in such function spaces, invariant under that transformation; it is impossible to
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present here all the function spaces in which such results have been obtained,
so let us simply recall the chain of spaces

Ḣ1/2(R3) ⊂ L3(R3) ⊂ Ḃ−1+3/p
p,∞ (R3)|p<+∞ ⊂ ∇BMO(R3) ⊂ Ċ−1(R3).

In that chain of spaces, Ḃ
−1+3/p
p,∞ (R3) stands for a homogeneous Besov space.

We shall not be using those spaces explicitly in this paper, so we will merely
recall the following definition, using Littlewood Paley theory, and we refer for
instance to [5] for a detailed presentation of the theory, and to [22] or [25] for
the analysis of Besov spaces: elements of Ḃs

p,∞(R3) satisfy

‖u‖Ḃs
p,∞(R3)

def== sup
j∈Z

2js‖∆ju‖Lp(R3) < +∞,

where ∆j is a Littlewood-Paley operator, defined by

∆̂ju(ξ) def==ϕ
(
2−j|ξ|

)
û(ξ)

and ϕ ∈ C∞
c ([12 , 2]) satisfies

∑
j∈Z

ϕ(2−jt) = 1, for all t > 0.

Furthermore, ∇BMO(R3) stands for the space of functions which are first
derivatives of functions in BMO(R3). We recall below the definition of the
norm ‖u‖BMO(R3), and refer to [24] for a detailed presentation of that space:

‖u‖BMO(R3)
def== sup

x0,R

1
|B(x0, R)|

∫
B(x0,R)

|u− uB(x0,R)|dx,

where

uB(x0,R)
def==

1
|B(x0, R)|

∫
B(x0,R)

u(x)dx.

In all those spaces except for the last, analogous existence and uniqueness
theorems to the case Ḣ1/2(R3) have been proved. We refer respectively to
T. Kato [18] and G. Furioli, P.-G. Lemarié and E. Terraneo [10] for the proof of
the L3(R3) case, to the book of M. Cannone [3] and the work of F. Planchon [23]
for Ḃ

−1+3/p
p,∞ (R3), p < +∞, and finally to H. Koch and D. Tataru [20] for the

space ∇BMO. In the space Ċ−1(R3) def== Ḃ−1
∞,∞(R3), uniqueness was proved by

J.-Y. Chemin in [6], supposing the data is also in the energy space L2(R3).
In relation with the result of H. Fujita and T. Kato mentionned above, let

us give the following definitions: we define the function spaces

(1.7)
{

ET
def== C0

(
[0, T ], Ḣ1/2(R3)

)
∩ L2

(
[0, T ], Ḣ3/2(R3)

)
,

E∞
def== C0

b

(
R
+, Ḣ1/2(R3)

)
∩ L2

(
R
+, Ḣ3/2(R3)

)
,

where C0
b denotes the set of bounded, continuous functions; we also define the

sets of initial data yielding solutions of (NS) in ET and E∞ respectively,

DT
def==

{
v0 ∈ Ḣ1/2(R3) |NS(v0) ∈ ET

}
,

D∞
def==

{
v0 ∈ Ḣ1/2(R3) |NS(v0) ∈ E∞

}
.
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Finally we define, for any vector field v,

(1.8)

{ ‖v‖Eν
T

def== supt≤T

(
‖v(t)‖2

Ḣ1/2(R3)
+ 2ν ‖v‖2

L2([0,t],Ḣ3/2(R3))

)1/2
,

‖v‖Eν
∞

def==
(
‖v‖2

L∞(R+,Ḣ1/2(R3))
+ 2ν ‖v‖2

L2(R+,Ḣ3/2(R3))

)1/2
.

Remark. — Note that nothing prevents a priori the life span T∗ associated
with some data v0 to satisfy T∗ = +∞ with v0 /∈ D∞: in that case,

lim
T→+∞

∥∥NS(v0)
∥∥
L2([0,T ],Ḣ3/2(R3))

= +∞.

Definition 1. — Let A ⊂ S′(R3) be a Banach space such that the embed-
ding Ḣ1/2(R3) ⊂ A is continuous. Then A is admissible if and only if the
following properties hold:

(i) The norm ‖ ‖A is invariant under the transformations

ϕ �−→ λϕ(λ·) ∀λ ∈ R and ϕ �→ ϕ(· − x0) ∀x0 ∈ R
3.

(ii) There exists a constant cAν depending only on ν and A such that if ϕ is
an element of Ḣ1/2(R3) and ‖ϕ‖A is smaller than cAν , then ϕ is in D∞.

Example 1. — An obvious example is of course Ḣ1/2(R3); point (i) is clear,
and point (ii) is due to H. Fujita and T. Kato’s theorem recalled above.

Example 2. — Similarly L3(R3) satisfies point (i), and a proof of (ii) can be
found in Proposition A.1 in the Appendix.

Example 3. — The Besov space Ḃ
−1+3/p
p,∞ (R3) satisfies point (i), and point (ii)

is proved for instance in Theorem 3.4.2 of [3] for p < +∞.

Example 4. — The space ∇BMO(R3) is a Banach space satisfying points (i)
and (ii), as proved in [9].

In the following, for any admissible space A in the sense of Definition 1, we
shall define the constant CA

NS
∈ R

+ ∪ {+∞} by

(1.9) CA
NS

def== sup
{
ρ > 0 ; BA

ρ ∩ Ḣ1/2(R3) ⊂ D∞
}
,

where
BA
ρ

def==
{
ϕ ∈ A ; ‖ϕ‖A < ρ

}
and we will note

(1.10) BA
NS

def==BA
C

NS
.

In other words, the set BA
NS

is the largest ball in A whose intersection with
Ḣ1/2(R3) is a subset of D∞. Note that we obviously have CA

NS
≥ cAν , where cAν

was defined in Property (ii) of Definition 1. The following result will be proved
in the Appendix.
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