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HYPERIDEAL POLYHEDRA IN HYPERBOLIC 3-SPACE

by Xiliang Bao & Francis Bonahon

Abstract. — A hyperideal polyhedron is a non-compact polyhedron in the hyperbolic
3-space 3 which, in the projective model for 3 ⊂ 3, is just the intersection of

3 with a projective polyhedron whose vertices are all outside 3 and whose edges all
meet 3 . We classify hyperideal polyhedra, up to isometries of 3 , in terms of their
combinatorial type and of their dihedral angles.

Résumé (Polyèdres hyperidéaux de l’espace hyperbolique de dimension 3)
Un polyèdre hyperidéal est un polyèdre non-compact de l’espace hyperbolique 3 de

dimension 3 qui, dans le modèle projectif pour 3 ⊂ 3, est simplement l’intersection
de 3 avec un polyèdre projectif dont les sommets sont tous en dehors de 3 et dont
toutes les arêtes rencontrent 3 . Nous classifions ces polyèdres hyperidéaux, à isométrie
de 3 près, en fonction de leur type combinatoire et de leurs angles diédraux.

Consider a compact convex polyhedron P , intersection of finitely many half-
spaces in one of the three n-dimensional homogeneous spaces, namely the eu-
clidean space En, the sphere Sn or the hyperbolic space Hn. The boundary of P
inherits a natural cell decomposition, coming from the faces of the polyhedron.
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Along each (n−2)-face e, we can measure the internal dihedral angle αe ∈ ]0, π[
between the two (n− 1)-faces meeting along e. A natural question then arises:
If we are given an (n− 1)-dimensional cell complex X with a weight αe ∈ ]0, π[
attached to each (n − 2)-dimensional cell e, is there a convex polyhedron P
in En, Sn or Hn whose boundary has the combinatorial structure of this cell
complex X , and such that αe is the dihedral angle of P along the face e?

An explicit computation provides a full answer in the simplest case where X
is the boundary of the n-simplex. The solution involves the signatures of var-
ious minors of the symmetric n × n-matrix whose ij-entry is +1 if i = j and
is − cosαeij , where eij is the edge joining the i-th vertex to the j-th vertex,
if i $= j; see [6], [17]. In particular, the answer is expressed in terms of the signs
of polynomials in cosαeij . Since this condition on the angles αe is not that
easy to handle, one can expect the general case to be quite intractable, and
this indeed seems to be the case.

In general, the main technical difficulty is to control the combinatorics as
one deforms the polyhedron P . A typical problem occurs when a p-dimensional
face becomes (p−1)-dimensional, for instance when two vertices collide so that
a 1-dimensional face shrinks to one point.

One way to bypass this technical difficulty is to impose additional restric-
tions which will prevent such vertex collisions and face collapses. For instance,
one can require that all dihedral angles αe are acute, namely lie in the inter-
val ]0, 1

2π]. In this context, Coxeter [6] proved that every acute angled compact
convex polyhedron in the euclidean space En is an orthogonal product of eu-
clidean simplices, possibly lower dimensional; this reduces the problem to the
case of euclidean simplices, which we already discussed. Similarly, Coxeter also
proved that every acute angled convex polyhedron in the sphere Sn is a simplex.
The situation is more complex in the hyperbolic space Hn but, when n = 3,
Andreev was able to classify all acute angled compact convex polyhedra in H3

in terms of their combinatorics and their dihedral angles [2].
In hyperbolic space, another approach to prevent vertex collisions is to put

these vertices infinitely apart, by considering (non-compact finite volume) ideal
polyhedra, where all vertices sit on the sphere at infinity ∂∞Hn of Hn. In [11],
Rivin classifies all ideal polyhedra in H3 in terms of their combinatorics and of
their dihedral angles. The case of acute angled polyhedra with some vertices
at infinity had been earlier considered by Andreev [3].

In this paper, we propose to go one step further by considering polyhedra in
H3 whose vertices are ‘beyond infinity’, and which we call hyperideal polyhedra.

These are best described in Klein’s projective model for H3. Recall that, in
this model, H3 is identified to the open unit ball in R3 ⊂ RP3, that geodesics
of H3 then correspond to the intersection of straight lines of R3 with H3, and
that totally geodesic planes in H3 are the intersection of linear planes with H3.
In this projective model H3 ⊂ RP3, a hyperideal polyhedron is defined as the
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intersection P of H3 with a compact convex polyhedron PProj of RP3 with the
following properties:

1) Every vertex of PProj is located outside of H3;
2) Every edge of PProj meets H3.

Note that we allow vertices of PProj to be located on the unit sphere ∂∞H3

bounding H3, so that hyperideal polyhedra include ideal polyhedra as a special
case.

From now on, we will restrict attention to the dimension n = 3. Following
the standard low-dimensional terminology, we will call vertex any 0-dimensional
face or cell, an edge will be a 1-dimensional face or cell, and we will reserve the
word face for any 2-dimensional face or cell.

To describe the combinatorics of a hyperideal polyhedron P , it is convenient
to consider the dual graph Γ of the cell decomposition of ∂P , namely the graph
whose vertices correspond to the (2-dimensional) faces of P , and where two
vertices v and v′ are connected by an edge exactly when the corresponding
faces f and f ′ of P have an edge in common. Note that Γ is also the dual
graph of the projective polyhedron PProj associated to P .

The graph Γ must be planar, in the sense that it can be embedded in the
sphere S2. In addition, Γ is 3-connected in the sense that it cannot be discon-
nected or reduced to a single point by removing 0, 1 or 2 vertices and their
adjacent edges; this easily follows from the fact that two distinct faces of PProj

can only meet along the empty set, one vertex or one edge. A famous theorem
of Steinitz states that a graph is the dual graph of a convex polyhedron in R3

if and only if it is planar and 3-connected; see [8]. A classical consequence of 3-
connectedness is that the embedding of Γ in S2 is unique up to homeomorphism
of S2; see for instance [9, §32]. In particular, it intrinsically makes sense to talk
of the components of S2 − Γ. Note that these components of S2 − Γ naturally
correspond to the vertices of PProj.

The results are simpler to state if, instead of the internal dihedral angle αe

of the polyhedron P along the edge e, we consider the external dihedral an-
gle θe = π − αe ∈ ]0, π[.

Theorem 1. — Let Γ be a 3-connected planar graph with a weight θe ∈ ]0, π[
attached to each edge e of Γ. There exists a hyperideal polyhedron P in H3 with
dual graph isomorphic to Γ and with external dihedral angle θe along the edge
corresponding to the edge e of Γ if and only if the following two conditions are
satisfied:

1) For every closed curve γ embedded in Γ and passing through the edges e1,
e2, . . . , en of Γ,

∑n
i=1 θei ≥ 2π with equality possible only if γ is the boundary

of a component of S2 − Γ;
2) For every arc γ embedded in Γ, passing through the edges e1, e2, . . . , en

of Γ, joining two distinct vertices v1 and v2 which are in the closure of the same
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component A of S2 − Γ but such that γ is not contained in the boundary of A,∑n
i=1 θei > π.
In addition, for the projective polyhedron PProj associated to P , a vertex of

PProj is located on the sphere at infinity ∂∞H3 if and only if equality holds in
Condition 1 for the boundary of the corresponding component of S2 − Γ.

Note that Theorem 1 generalizes Rivin’s existence result for ideal polyhe-
dra [11].

Theorem 2. — The hyperideal polyhedron P in Theorem 1 is unique up to
isometry of H3.

Theorem 2 was proved by Rivin [10], [11] for ideal polyhedra, and by Rivin
and Hodgson [12] (if we use the truncated polyhedra discussed in §1) for the
other extreme, namely for hyperideal polyhedra with no vertex on the sphere at
infinity. Even in these cases, one could argue that our proof is a little simpler, as
it is based on relatively simple infinitesimal lemmas followed by covering space
argument, as opposed to the more delicate global argument of Lemma 4.11
of [12]. However, the main point of Theorem 2 is that it is a key ingredient
for the proof of Theorem 1, justifying once again the heuristic principle that
“uniqueness implies existence”. Theorem 2 is the reason why we introduced
Condition 2 in the definition of hyperideal polyhedra, as it fails for general
polyhedra without vertices in H3.

Our proof of Theorems 1 and 2 is based on the continuity method pioneered
by Aleksandrov [1] and further exploited in [2] and [12]. We first use an implicit
function theorem, proved through a variation of Cauchy’s celebrated rigidity
theorem for euclidean polyhedra [5], to show that a hyperideal polyhedron is
locally determined by its combinatorial type and its dihedral angles. We then
go from local to global by a covering argument.

Although the generalization of the results of [11] from ideal polyhedra to
hyperideal polyhedra is of interest by itself, the real motivation for this work
was to provide a proof of the classification of ideal polyhedra which locally
controls the combinatorics of the polyhedra involved. Ideal polyhedra play
an important role in 3-dimensional geometry, as they can be used as building
blocks to construct hyperbolic 3-manifolds through the use of ideal triangula-
tions, possibly not locally finite. To study deformations of a hyperbolic metric
on a 3-manifold, it is therefore useful to have a good classification of the defor-
mations of ideal polyhedra within a given combinatorial type. Unfortunately,
Rivin’s argument in [11] is indirect. He first uses the classification of compact
hyperbolic polyhedra by their dual polyhedra [12], where one completely looses
control of the combinatorics, and he extends it to ideal polyhedra by passing to
the limit as the vertices go to infinity; he then observes that for ideal polyhedra
the dual polyhedron does determine the combinatorics of the ideal polyhedron.
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In this regard, the local characterization of hyperideal polyhedra by their di-
hedral angles provided by our Theorem 11, which is already the key technical
step in this paper, may be its most useful result for applications.

The paper [10] provides a different approach to a local control of ideal polyhe-
dra through their combinatorics and dihedral angles. The reader is also referred
to [13], [14] for the consideration of other rigidity properties of polyhedra in
hyperbolic 3-space.

It may also be of interest that Theorems 1 and 2 can be translated into
purely euclidean (or at least projective) statements. Indeed, they provide a
classification of hyperideal projective polyhedra PProj modulo the action of
the group PO(3, 1) consisting of those projective transformations of RP3 that
respect the unit sphere S2 ⊂ R3 ⊂ RP3. This is particularly remarkable when
one notices that, for an edge e of P = H3 ∩ PProj, the hyperbolic dihedral
angle θe of P is equal to the euclidean angle between the two circles Π ∩ S2

and Π′ ∩ S2 at their intersection points, where Π and Π′ are the two euclidean
planes respectively containing the two faces of P that meet along e. By duality,
Theorems 1 and 2 also classify convex projective polyhedra whose faces all meet
the unit sphere S2 ⊂ R3 ⊂ RP3 but whose edges are all disjoint from the closed
ball H3 ∪ S2, modulo the action of PO(3, 1).

Theorems 1 and 2 for the somewhat simpler case of strictly ideal polyhedra,
where all vertices of PProj are outside of the closure of H3, appeared in [4].
The final draft of this paper was essentially completed while the second author
was visiting the Institut des Hautes Études Scientifiques, which he would like
to thank for its productive hospitality. The authors are also grateful to the
referee for several suggestions of improvement of the exposition, including a
simplification of the proof of Proposition 6.

1. Hyperideal polyhedra

We first recall a few basic facts about the projective model for H3 (see for
instance [16]).

Consider the symmetric bilinear form

B
(
(X0, X1, X2, X3), (Y0, Y1, Y2, Y3)

)
= −X0Y0 + X1Y1 + X2Y2 + X3Y3

on R4. In the projective space RP3, we consider the image H3 of the set of
those X ∈ R4 with B(X, X) < 0. For the standard embedding of R3 in RP3,
defined by associating to (x1, x2, x3) ∈ R3 the point of RP3 with homogeneous
coordinates (1, x1, x2, x3), the subset H3 just corresponds to the open unit ball
in R3.

The projection R4 → RP3 induces a diffeomorphism between H3 and the
set H of those X = (X0, X1, X2, X3) ∈ R4 with B(X, X) = −1 and X0 > 0.
The tangent space TXH of H at X is equal to the B-orthogonal of X and,
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