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STRUCTURE OF CENTRAL TORSION
IWASAWA MODULES

BY SuUsAN HowsoN

ABSTRACT. — We describe an approach to determining, up to pseudoisomorphism,
the structure of a central-torsion module over the Iwasawa algebra of a pro-p, p-adic,
Lie group containing no element of order p. The techniques employed follow classical
methods used in the commutative case, but using Ore’s method of localisation. We
then consider the properties of certain invariants which may prove useful in determining
the structure of a module. Finally, we describe the case of pro-p subgroups of GL2(Zy)
in detail and give a brief example from the theory of elliptic curves.

RESUME (Les structures des modules de torsion sur le centre d’une algébre d’Iwasawa)

Nous décrivons une méthode pour déterminer, & pseudo-isomorphisme pres, la
structure d’un module de torsion sur le centre d’une algebre d’Iwasawa d’un pro-p
groupe de Lie p-adique ne contenant pas d’élément d’ordre p. La méthode est sem-
blable a celle utilisée dans le cas commutatif grace au procédé de localisation de Ore.
Nous étudions ensuite les propriétés de certains invariants qui peuvent étre utiles pour
déterminer la structure d’un tel module. Enfin nous traitons en détail le cas d’un pro-p
sous-groupe de GL2(Zp) et nous donnons un exemple d’application & la théorie des
courbes elliptiques.
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Introduction

Let G be a pro-p, p-adic, compact Lie group, containing no element of or-
der p. We are interested in the structure of modules finitely generated over its
Iwasawa algebra, A(G), defined by

(1) AG) := lim 7,(G/H]
Ha,G

We describe a structure theorem for the £-torsion submodule of M, where £
is an element of A(G) which is

(i) a prime of A, and
(ii) lies in the centre of A.

The set of elements of M which are annihilated by some power of & will
be denoted by M (§). Because ¢ is central, this does form a A(G)-submodule.
Note that since A is Noetherian, and £ is central, M (£) is finitely generated
over A and there exists some integer n > 0 such that "M (£) = 0. The main
technique used is the Ore method of localisation.

In the case G is uniform, this applies to £ = p. This is because A(G)/p, which
is the Fp-linear completed group algebra F,[[G]], is known to contain no zero
divisors in this case, see the second edition of [10, chap.12]. (By convention,
zero itself is not considered a zero divisor.)

We then glue this together, for the set of all such &, and discuss some prop-
erties. We consider certain invariants of A-torsion Iwasawa modules which we
have called generalised Euler Characteristics. These may help in explicitly de-
termining structures. In particular, in Section 3 we generalise results from an
earlier paper [13] which considered invariants for the case £ = p in some detail.

In the final section we consider in more detail the case of pro-p open sub-
groups of GL2(Z,), determining the centre and central primes. We conclude
by giving an application to the study of the structure of the Selmer group of
an elliptic curve, taking further an example already studied in [5], [7] and [13].

Since this paper has been written with applications to Number Theory in
mind, in particular to Iwasawa Theory, rather more details of standard results
in the theory of noncommutative Noetherian rings have been given than might
otherwise have been the case. For convenience, most references for such stan-
dard material are to the book of McConnell and Robson [15]. For standard
results on the structure of the classical Iwasawa algebra we refer to the book
of Neukirch, Schmidt and Wingberg [16].

Notation. — Throughout the remainder, G represents a pro-p, p-adic, Lie
group, whose dimension as a p-adic manifold is finite, equal to d. Except-
ing the final section, G remains fixed and we will omit it from the notation,
writing simply A for A(G). We use always £ to denote a central prime, by
which we mean a prime element of A which lies in the centre of A.
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lines to that considered in § 2 of this paper. Their results hold more generally
than Theorem 2.5 as they apply to all torsion modules over the Iwasawa algebra
of an extra powerful pro-p, p-adic Lie group (a slightly stronger restriction on
the group than the results in the present paper.) They do not, however, obtain
uniqueness of the structures, and can not give explicit pseudoisomorphisms in
the category of finitely generated A-modules. Their structures are determined
in the quotient category, of torsion A-modules quotiented by the subcategory
of pseudonull submodules. See § 1.2 for the definition of pseudonull, following
the work of Venjakob, in this case. Finally, I wish to thank Ralph Greenberg
and Chris Brookes for helpful conversations concerning the explicit determina-
tion of the centre of the Iwasawa algebra of a pro-p, open subgroup of GL2(Z,,)
given in §4 and Ken Brown for pointing out an error in an earlier version of
this paper.

1. Background Algebra

1.1. Properties of Localisations. — We start by quoting some elementary
properties of A which are essential for the remainder.

Recall that the (left/right) projective dimension of a (left/right) A-module
is the least integer n such that it has a projective resolution of length n. The
global dimension of A is the supremum of the projective dimensions of all A-
modules. We do not need to specify whether left or right global dimension since
for Noetherian rings the supremum over left modules and over right modules
coincide. That A is Noetherian is proven in [10]. Brumer has shown in [4] that
A has finite global dimension equal to d + 1. Both these last two properties do
not require that G be pro-p, only that it be p-adic analytic with, for the finite
global dimension property, no element of order p. This last condition is needed
to ensure G has finite cohomological dimension, equal to d, [20]. Also, if G is
pro-p but possibly containing an element of order p, then A is a local ring, with
unique maximal ideal given by the kernel of the canonical map

(2) A— Ly — Ty,

where the first map is the augmentation map, sending every element of G to 1.
We denote the maximal ideal of A by 91. If we insist that G contain no element
of any finite order (other than the identity) then Neumann has proven in [17]
that A contains no zero divisors.

Throughout this section we fix a choice of central prime, £&. For £ in the
centre of A, \ any element of A, the statement & divides A is unambiguous, and
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means A = a = a&, for some a in A. We do not need to specify whether £ is
a right or left divisor. To consider modules in this non commutative situation
we must be careful to distinguish between left and right actions. We will make
an arbitrary choice, thus, except where specified otherwise, all ideals and A-
modules are left ideals and modules. The entire theory is symmetrical.

LEMMA 1.1. — If € is a central prime in A then every element of A can be
uniquely written as a&” for some finite integer r > 0, and some a in A such
that & does not divide a.

Proof. — The definition of prime requires that ¢ is not a unit, thus £ is an
element of the maximal ideal, 9%, of A. The 9" form a base of neighbourhoods
of zero in A, and so (1,5, 9" = {0}. Let A be a non zero element of A. Since
¢ is an element of 91, there exists some n such that A is contained in 91" ~!
and not contained in 9. Then the maximal power of £ which can divide A
is bounded by n — 1.

We can certainly write A = £"a, such that £ does not divide a. Suppose we
can do this in two ways:

(3) &a = £°.

We may assume that r is less than or equal to s. Then

(4) {"(a—&"b) =0.

Since A contains no zero divisors, we must have a = £*~"b, and so a = b and
r=Ss. [l

DEFINITION. — Let R be a ring, S any subset of R. We say that S satisfies
the Ore Condition if for any element a in R and any element b in the subset .S
both the following conditions are satisfied:

(i) there exists a; in R and by in S such that

(5) bla = alb
(ii) there exists as in R and bs in S such that
(6) abg = bag

(The first condition is known as the left Ore condition, the second the right
Ore condition.)

LEMMA 1.2. — If we take the subset S to be the set of elements of A which
are not contained in EA, in other words the set of elements not divisible by &,
then S satisfies the Ore condition above.

Proof. — We consider only the first condition, the proof of the second is entirely
symmetrical. Let a be any element of A and b an element of S. If a equals zero
then we may take any by, with a; also equal to zero. Thus we assume a is non
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zero. Since A is both left and right Noetherian, and contains no zero divisors,
it is known that the set of non zero elements in A satisfies the Ore condition,
[15]. Thus we may write

(7) ba=ab

for some non zero element b’ in A. By Lemma 1.1, we can write b’ = £™by, for
some by contained in S. Thus (7) becomes £™b1a = a’b. Since ¢ is central and
prime, and by the assumption that b is not divisible by &, this implies that

(8) a =¢€a;, andso &Mbia = EMayh,

for some a; contained in A. Since A contains no zero divisors, we may cancel £,
giving

(9) bla = alb

where by is an element of S as required in the Ore condition, (i). O

DEFINITION. — Let S be a multiplicatively closed subset of A, A left locali-
sation of A at S is a ring Ag together with a homomorphism 6 : A — Ag,
such that

(i) O(s) is a unit in Ag for all s in S,
(ii) all ¢ in Ag can be written ¢ = 0(s)~0()\) for some s in S, A in A and
(iii) Ker(8) = {A € A | As =0 for some s in S}.

One can similarly define a right localisation.

Since the ring, A, which interests us contains no zero divisors, condition (iii)
becomes the statement ‘@ is an injection’.

THEOREM 1.3 (See [15, §2.1.12]). — If S is a multiplicatively closed subset
of A then the left localisation Ag exists if S satisfies the left Ore condition.
Similarly, a right localisation exists if S satisfies the right Ore condition. If a
localisation exists then it is unique up to canonical isomorphism. In particular,
if both the left and right localisations exist then they are isomorphic.

Thus in the case of interest here it will not be necessary to distinguish
between a left or right localisation of A.

For the remainder of this section we fix S to be the set A\EA. Tt is mul-
tiplicatively closed by the assumption that £ is prime. Many of the general
properties of localisation discussed hold for localisation with respect to any
suitable set S, and the general statements are given in [15]. We have restricted
to S = A\EA for ease of exposition.

DEFINITION. — We will use the notation A for the localisation of A at S,
where S is taken to be the set of elements of A not contained in the ideal A¢.
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