
Bull. Soc. math. France
131 (2), 2003, p. 289–306

FOCUSING OF A PULSE WITH ARBITRARY PHASE
SHIFT FOR A NONLINEAR WAVE EQUATION

by Rémi Carles & David Lannes

Abstract. — We consider a system of two linear conservative wave equations, with
a nonlinear coupling, in space dimension three. Spherical pulse like initial data cause
focusing at the origin in the limit of short wavelength. Because the equations are
conservative, the caustic crossing is not trivial, and we analyze it for particular ini-
tial data. It turns out that the phase shift between the incoming wave (before the
focus) and the outgoing wave (past the focus) behaves like ln ε, where ε stands for the
wavelength.

Résumé (Focalisation d’impulsion et déphasage arbitraire pour une équation des ondes
non-linéaire)

Nous considérons un système de deux équations des ondes linéaires conservatives,
couplées non-linéairement, en dimension trois d’espace. Pour des données initiales ra-
diales de type impulsions courtes, les solutions focalisent à l’origine lorsque la longueur
d’onde tend vers zéro. Le caractère conservatif de l’équation fait que la traversée de la
caustique n’est pas triviale : nous l’analysons pour des données initiales particulières.
Il ressort que le déphasage entre l’onde entrante (avant focalisation) et l’onde sortante
(après focalisation) se comporte en ln ε, où ε représente la longueur d’onde.
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1. Introduction

1.1. Motivation. — Informations on rapidly oscillating solutions to partial
differential equations can be provided by WKB approximations, whose first
rigorous justification goes back to Lax [14] (see also [12] for a survey of more
recent results). This approach yields good results as long as the solution of
the eikonal equation remains smooth, that is, before caustics are formed. The
influence of such a singular locus on the behavior of solutions to linear partial
differential equations was explained by Ludwig [15], and Duistermaat [9]; the
caustic crossing is mainly described by the Maslov index.

For nonlinear equations, no global theory is available. Formal computations
on conservation laws performed in [10] suggest the existence of two distinct
notions of critical indexes; a critical index to describe the solution away from
caustics, and another one to analyze the solution near caustics. Rigorous proofs
for results similar to those stated in [10] are given in [13], [2], and in the more
recent articles by Carles and Rauch in the case of pulse-like data (as opposed
to wave trains, see e.g. [1], [7]), as we now recall.

Consider the initial value problem,

(1.1)


(∂2

t − ∆)uε + aεp−2|∂tu
ε|p−1∂tu

ε = 0, (t, x) ∈ [0, T ] × R3,

uε
t=0 = εU0

(
r,
r − r0

ε

)
, ∂tu

ε
t=0 = U1

(
r,
r − r0

ε

)
,

where p ≥ 2, r = |x| and r0 > 0. The parameter ε lies in ]0, 1], and we want
to analyze the asymptotics of ∂tu

ε in L∞ as ε goes to zero. We assume that
the functions U0 and U1 are infinitely differentiable, bounded, and compactly
supported in r > 0. The last assumption implies that the initial data are pulse
like in the limit ε → 0. The spherical symmetry of the initial data causes
focusing at the origin at time t = r0.

The balance between the power of ε (εp−2) and the power of the nonlinear-
ity (|∂tu

ε|p−1∂tu
ε) corresponds to the critical notion of “nonlinear caustic”, as

named in [10]; this means that nonlinear effects occur at leading order near
the focus (t, x) = (r0, 0), whereas it would not be so if εp−2 was replaced by εδ

with δ > p− 2 (see [7] for the case δ = 0, 1 < p < 2).
In [5], [6], the following distinctions were proved in the case a > 0, that is

when the equation is dissipative (see also [4], [8]).
• If p > 2, the solution uε passes through the focus, and the caustic crossing

is described by a (short range) scattering operator, associated to Eq. (1.1)
with ε = 1 (see [6]).

• If p = 2, then the pulses are absorbed before reaching the focus ([5], see
also [11], [13]).

The case p > 2, a ∈ C is also considered in [4], for small data Uj , with the
same conclusion as in the case a > 0. It is described by a scattering operator,
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and the analysis suggests that the equivalent problem for a > 0, p = 2 leads to
a long range scattering operator. The second point would therefore mean that
for a dissipative equation, the image of a long range scattering operator may
be reduced to the zero function. On the other hand if a is a pure imaginary,
then Eq. (1.1) is conservative, therefore the pulses are not absorbed, and the
underlying long range scattering operator should not be trivial. We therefore
consider in the present article the case where a is a pure imaginary, and p = 2.

In [3], the cubic nonlinear Schrödinger equation is analyzed is one space
dimension. A semi-classical analysis shows that when suitable initial data are
considered, then the solution focuses at one point, and the caustic crossing is
described by a long range scattering operator, which gives rise to a “random”
phase shift past the focus, inasmuch as it depends on ε (logarithmically). The
nonlinear Schrödinger equation which was considered is conservative, but one
could argue that the geometry associated to this problem is not natural. This
is why we consider here the wave equation, with the idea of underscoring the
corresponding phenomenon of arbitrary phase shift (see Th. 1.1 below).

Figure 1. Focusing of pulses in the case of radially symmetric initial
data for the wave equation.

1.2. Reduction of the problem. — It turns out that the initial value prob-
lem (1.1) with a ∈ iR and p = 2 is technically quite difficult to analyze, with
an asymptotic description of the solution in mind. We therefore consider the
simplified problem,

(1.2)

{
(∂2

t − ∆)uε = 0,

(∂2
t − ∆)uε − 4i|∂tuε|∂tu

ε = 0.

This is a system of two linear equations, with a nonlinear coupling that corre-
sponds to a semi-implicit scheme that preserves the conservation of the energy,
in view of a numerical treatment for instance. We picked a = −4i for simpler
notations in the sequel.
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We now proceed to the same reduction as in [7] and [4]. Since the initial
data are spherical, so is the solution so, with the usual abuse of notation,

uε(t, x) = uε
(
t, |x|

)
, uε

(
t, |x|

)
∈ C∞

even in r(Rt × Rr).

Introduce vε := (vε
−, v

ε
+) where

(1.3) ũε(t, r) := ruε(t, r), vε
∓ := (∂t ± ∂r)ũε.

Then (1.2) becomes

(1.4)


(∂t ± ∂r)vε

± = 0,

(∂t ± ∂r)vε
± = i

r |vε
− + vε

+|(vε
− + vε

+), t ≥ 0, r > 0,

vε
− + vε

+ r=0 = vε
− + vε

+ r=0 = 0.

We now turn to the choice of the initial data. As shown in [7], the interaction
of the outgoing wave (vε

+) and the incoming wave (vε
−) is negligible outside the

focus, because of the pulse like aspect of the waves (they do not have time to
interact), therefore we simplify the notations by imposing vε

+|t=0 = vε
+|t=0 = 0.

We also choose
vε
−|t=0 = f

(r − r0

ε

)
,

where f ∈ C∞
0 (R). We removed the dependence of the initial data upon slow

variables, for it is negligible because of the pulse like aspect. We therefore have
explicitly, for t ≥ 0,

vε
−(t, r) = f

(r + t− r0

ε

)
, vε

+(t, r) = −f
( t− r − r0

ε

)
.

The expression of vε
+ shows that on traversing the focus the amplitude of the

profile is multiplied by −1 = ei2π/2. This phenomenon is linear: it is the
classical Maslov index for a focal point of multiplicity equal to 2 (see e.g. [9]).

The choice of vε
−|t=0 may seem more intricate, but it turns out that it sim-

plifies the computations (at least it makes them feasible) and leads to the
phenomenon we want to underscore. We choose

(1.5) vε
−|t=0 = g

(r − r0

ε

)
ei|f((r−r0)/ε)| ln r0ε/r,

with g ∈ C∞
0 (R). The introduction of a logarithmic factor in the phase may

seem artificial, just as well as in [3]. Remind that our goal is to describe the
caustic crossing thanks to a long range scattering operator: it is classical that
this analysis involves phase modification. It will appear later on that our proofs
highly rely on this particularity (see Remark 4.2), and it would be interesting
to know what happens when this initial phase term is removed. On the other
hand, the presence of r0/r in the logarithmic term is purely cosmetic, to simplify
as much as possible the notations in the sequel. It could be removed, essentially
because on the support of f , we have r − r0 = O(ε).
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The reduced problem we will study therefore reads,

(1.6)


(∂t ± ∂r)vε

± =
i

r

∣∣∣f(r + t− r0

ε

)
− f

( t− r − r0

ε

)∣∣∣(vε
− + vε

+),

vε
− + vε

+ r=0 = 0,

vε
− t=0 = g

(r − r0

ε

)
ei|f((r−r0)/ε)| ln r0ε/r,

vε
+ t=0 = 0.

1.3. Statement of the results. — In the rest of this paper, we analyze the
reduced functions vε

±. One could deduce the asymptotics of ∂tu
ε in L∞ thanks

to (1.3). The main result of this article is the following.

Theorem 1.1. — Let f, g ∈ C∞
0 (R), r0 > 0, ε > 0. Then (1.6) has a unique,

global solution (vε
−, v

ε
+) ∈ L∞(R+ × R+)2, uniformly bounded for ε ∈ ]0, 1].

Moreover, one has the following asymptotics, as ε goes to zero. Let C > 0.
• If 0 ≤ t ≤ r0 − Cε, then∥∥∥vε

−(t, r) − g
(r + t− r0

ε

)
ei|f((r+t−r0)/ε)| ln r0ε/r

∥∥∥
L∞

r

+
∥∥vε

+(t, r)
∥∥

L∞
r

= O
( ε

r0 − t

)
.

• There exists ν+ ∈ L∞(R) such that for t ≥ r0 + Cε,∥∥∥vε
+(t, r) − ν+

( t− r − r0

ε

)
eiθε(t,r)

∥∥∥
L∞

r

+
∥∥vε

−(t, r)
∥∥

L∞
r

= O
(
ε +

ε

t− r0

)
,

where θε is given by

θε(t, r) =
∫ r/ε

r0

1
σ

∣∣∣f( t− r − r0

ε
+ 2σ

)
− f

( t− r − r0

ε

)∣∣∣dσ.
• There exists a “caustic profile” (V−, V+) ∈ L∞(R × R+)2 such that for
|t− r0| ≤ Cε and r ≤ Cε,

vε
±(t, r) = V±

( t− r0

ε
,r
ε

)
+ O(ε).

Remark 1.2. — The constant C in the above statement is arbitrary, its influ-
ence is hidden in the remainders. Notice that when t− r0 = O(ε), the first two
assertions claim nothing more than the uniform boundedness of vε

− and vε
+.

Remark 1.3. — We will prove in Sect. 4 that ν+ is not only bounded, but
has algebraic decay, ν+(λ) = O(〈λ〉−1), where as usual, 〈λ〉 =

√
1 + λ2.
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