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SCHÉMAS EN GROUPES ET IMMEUBLES DES
GROUPES EXCEPTIONNELS SUR UN CORPS LOCAL.

PREMIÈRE PARTIE : LE GROUPE G2

par Wee Teck Gan & Jiu-Kang Yu

Résumé. — Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les
groupes exceptionnels de type G2 sur un corps local. Nous décrivons chaque construc-
tion concrètement en termes de réseaux : l’immeuble, les appartements, la structure
simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec
les espaces symétriques réels et des espaces symétriques associés à G2 réel et complexe.

Abstract (Group Schemes and Buildings of Exceptional Groups over a Local Field.
First Part : the Group G2)
We give an explicit Bruhat-Tits theory for the exceptional group of type G2 over

a local field. We describe every construct concretely in terms of lattices: the building,
the apartments, the simplicial structure, and the associated group schemes. The ap-

pendices discuss analogy with symmetric spaces and the symmetric space of the real
or complex G2.
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1. Introduction

The title of this paper is chosen as a tribute to the fundamental contributions
of Bruhat and Tits to the structure theory of reductive groups over local fields
through their series of papers [3], [4], [5], [7], [6], and is as far as we dare
to venture with the French language. In [3], [4], Bruhat and Tits attach to
any connected reductive group G over a local field k its building B(G), which
is a polysimplicial complex equipped with an action of G(k). To each point
x ∈ B(G), they also attach a smooth connected affine group scheme Gx over
the ring of integers A, with generic fiber G and such that (at least when G
is simply-connected) Gx(A) is the stabilizer of x in G(k). The description
of B(G) in [3], [4] is given in terms of the notion of valuations of root datum.
However, in [5], [7], the building of a classical group G is given a more concrete
description in terms of the standard representation V of G: B(G) is realized
geometrically as a set of norms, or equivalently a set of graded lattice chains,
on V satisfying certain conditions, and the group schemes Gx are realized
as stabilizers of these lattice chains in V . Using such a concrete description
ofB(G), one can give a lattice-theoretic description of the Moy-Prasad filtration
on the parahoric subgroups of classical groups (cf. [20] and [19]). In view of
such applications, it is useful to extend this concrete description of B(G) to the
case when G is an exceptional group, and the objective of the present paper is
to carry out such a programme for the exceptional group of type G2.
The reader familiar with Bruhat-Tits theory will be disappointed to learn

that we will be working over a field which is complete with respect to a discrete
valuation. Such a restriction would be considered a sin in [3], [4], but is already
present to some extent in [5], [7]. Hence, throughout the paper, A will denote
a complete discrete valuation ring, with valuation map ord, field of fractions k,
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uniformizer π, and perfect residue field A/π of characteristic p. Let G denote
a simple algebraic group over k of type G2; we remind the reader that if the
residue field A/π has cohomological dimension ≤ 1 (e.g. if A/π is a finite field
or is algebraically closed), then such a group is necessarily split [6]. Although
all our main results are valid for an arbitrary form of G2, we will assume that G
is the split form of G2 in most part of the paper. The non-split case, which is
very easy, is treated in §12.
The group G can be constructed as the automorphism group of an octonion

algebra V over k, and thus has a natural 8-dimensional rational representation.
We call V the standard representation of G. Though this representation is not
irreducible, it seems more natural to describe the building B(G) in terms of V ,
rather than, say, the 7-dimensional submodule of trace zero elements in V .

The octonion algebra V possesses a natural quadratic form which is pre-
served by G. Hence the representation V gives an embedding ι : G ↪→ SO(V ).
We show in §4 that this gives rise to a canonical embedding ι∗ : B(G) ↪→
B(SO(V )). The building B(SO(V )) has been described explicitly in [7] as the
set of maximinorante norms on V (relative to the natural quadratic form on V ).
Our main results can now be summarized as follows.

(a) The determination of the image of ι∗ (Thm. 7.2). The answer is most
natural: B(G) is simply the set of maximinorante norms which are algebra
norms for the octonion multiplication. This describes B(G) as a metric space.
(b) The description of the simplicial complex structure of B(G), in terms of

certain orders in the octonion algebra (Thm. 9.5). Using these orders, we de-
scribe the parahoric subgroups ofG(k), as well as their associated smooth group
schemes over A (Thm. 10.1). We also describe the structure of apartments in
B(G) (Prop. 8.1).
(c) There is a S3-action on Spin(V ) whose group of fixed points is G. This

induces an action of S3 on B(Spin(V )). We show that B(G) is precisely the set
of points on B(Spin(V )) fixed under this action (Cor. 11.4).

The determination of the image of ι∗ is an application of a general formalism
described in §3 (Thm. 3.5). This formalism is quite useful for identifying the
image of a descent map. In addition to (a) and (c), it can be applied to:

(d) The determination of the building of a classical group as a subset of
the building of the ambient general linear group (Prop. 4.1). This reproves the
results of [7] concerning the buildings of classical groups, at least when the
residue characteristic p is not 2.
(e) An explicit description of the building of the split group Spin8

(Thm. 11.3), together with the action of S3; this will be needed in the
study of the building of a general trialitarian Spin8.

When p �= 2, 3, the results (c) and (d) also follow from the general results of
[13]. The proof here is valid also in residue characteristic 2 or 3, and has the
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advantage/disadvantage of offering/requiringmore information about the arith-
metic and geometry underlying the groups involved. The formalism (Thm. 3.5)
will also be useful in the study of the buildings of the other exceptional groups.
As is well-known, the reduced Bruhat-Tits building of G(k) is the p-adic

analogue of the symmetric space of a reductive real Lie group. In the Appendix
§13, we introduce the notion of the extended symmetric space, which is the real
analogue of the extended building and which has better functorial properties
than the symmetric space. We also prove real analogues of (c) and (d), and
more generally the analogue of the main theorem in [13]. Finally, in §14, we
prove a real analogue of (a) (Thm. 7.2), which describes the symmetric space
of G2(R) in terms of self-dual norms of an octonion algebra.

2. Generalities on Norms

In this section, let V be a finite dimensional vector space over k. We shall
recall some basic notions about norms on V . The material is largely taken from
[5], [7], and we include it here for the convenience of the reader and for ease
of reference.
A norm on V is a function α : V → R ∪ {∞} satisfying:
– α(x+ y) ≥ inf {α(x), α(y)}, for all x, y ∈ V ;
– α(λx) = ord(λ) + α(x), for λ ∈ k and x ∈ V ;
– α(x) =∞ if and only if x = 0.
A basis {x1, . . . , xn} of V is called a splitting basis for α if

α
(∑
i

λixi

)
= inf

i
α(λixi).

Since we are assuming that k is complete with respect to a discrete valuation,
every norm α possesses a splitting basis [5, 1.5]. Moreover, if β is another norm
on V , there is a common splitting basis for α and β. For each 0 ≤ t ≤ 1, there
is a norm γt which is characterized by the property that any common splitting
basis {x1, . . . , xn} for α and β is also a splitting basis for γt, and

γt(xi) = tα(xi) + (1− t)β(xi), i = 1, . . . , n.

Another way of characterizing γt is to say that it is the smallest norm satisfying

γt(x) ≥ tα(x) + (1− t)β(x), for all x ∈ V .

We shall denote γt by tα+ (1− t)β. This defines an affine structure on the set
of norms on V .
The norm α determines a norm α∗ on the dual space V ∗, which is given by

α∗(ϕ) = inf
x∈V

(
ord(ϕ(x)) − α(x)

)
.
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More concretely, if {x1, . . . , xn} is a splitting basis for α, then α∗ is char-
acterized by the requirement that it is split by the dual basis {x∗1, . . . , x∗n},
and α∗(x∗i ) = −α(xi). Moreover, we have
(1) (tα+ (1 − t)β)∗ = tα∗ + (1 − t)β∗,

for norms α and β on V .
If W is another finite-dimensional vector space over k, equipped with a

norm β, then one can form a norm α⊗ β on V ⊗W , which is given as follows.
Let {x1, . . . , xn} be a splitting basis for α. Then any element of V ⊗W can be
written in the form

∑
i xi ⊗ wi, and

(α ⊗ β)
(∑
i

xi ⊗ wi
)
= inf

i

(
α(xi) + β(wi)

)
.

In particular, since every non-zero vector is an element of a splitting basis for
any norm, we have

(α⊗ β)(v ⊗ w) = α(v) + β(w), for v, w �= 0.
Now suppose that V is equipped with a non-degenerate bilinear form f , and

thus an isomorphism V → V ∗ given by: x → f(x,−). Via this isomorphism,
we can regard α∗ as a norm on V , and we say that α is self-dual (with respect
to the given bilinear form f) if α = α∗. By (1), one sees that the set of self-dual
norms is a convex subset of the set of all norms, in the sense that tα+(1− t)β
is self-dual if α and β are.
There is another way of viewing the self-dual norms. Suppose that (q, f)

is a pair consisting of a non-degenerate quadratic form q and the associated
symmetric bilinear form f , so that

f(x, y) = q(x+ y)− q(x)− q(y).
Following [7], we say that a norm α minorizes f if it satisfies

α(x) + α(y) ≤ ord
(
f(x, y)

)
, for all x, y ∈ V .

It was shown in [7, Prop. 2.5 (ii)] that α is self-dual with respect to f if and
only if it is a maximal element in the set of norms minorizing f . Similarly, say
that α minorizes (q, f) if it minorizes f , and satisfies

α(x) ≤ 1
2
· ord(q(x)), for all x ∈ V .

If α is a maximal element in the set of norms minorizing (q, f), then we say that
α is maximinorante (suppressing the mention of (q, f)). Note that if the residue
characteristic p is not 2, then α minorizes f if and only if it minorizes (q, f),
and hence α is self-dual if and only if it is maximinorante. The situation is
more complicated when p = 2. For example, when dim(V ) is odd, the form
f is degenerate if char(k) = 2, so that there is no notion of self-duality; even
if char(k) = 0, it is possible to have a norm α which minorizes f but not
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