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ON SYSTEMS OF LINEAR INEQUALITIES

BY MAsAMI FUJIMORI

In celebration of the 70th birthday of Professor Gengiro Fujisaki

ABSTRACT. — We show in detail that the category of general Roth systems or the cat-
egory of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian
category. On the way, we present a new proof of the semi-stability of the tensor prod-
uct of semi-stable systems. The proof is based on a numerical criterion for a system
of linear inequalities to be semi-stable.

RESUME (Sur certains systémes d’inégalités linéaires). — On démontre en détail que
la catégorie des systemes de Roth généraux ou la catégorie des systemes semi-stables
d’inégalités linéaires de pente zéro est une catégorie tannakienne neutre. En chemin,
on présente une nouvelle preuve de la semi-stabilité du produit tensoriel de systemes
semi-stables. La preuve découle d’un critére numérique pour qu’un systéme d’inégalités
linéaires soit semi-stable.

Introduction
Let f1,..., fn be absolutely linearly independent linear forms in n variables
Ty,..., T, with real algebraic coefficients; ¢(1), ..., ¢(n) real numbers such that
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c(1)4- - 4c¢(n) = 0; and Q, § positive real numbers. We are primarily interested
in properties of the rational integral solutions to the system of inequalities

fiT1 e T < Q07 (@>13i=1,...,n)

when ¢ is fixed. For example, finiteness of the number of solutions.

Let L be the subfield of the field of real numbers generated by all the co-
efficients of f1,..., fn. If we do not seek sharp estimates, then it seems that
the nature of the system comes from a descending filtration on the L-vector
space LT & --- @ LT,,: the family f1,..., f, is a basis which induces a basis of
the associated graded vector space. The number ¢(i) is the weight of f; with
respect to the filtration. In fact, one sees easily that finiteness of the number
of solutions is independent of choices of such a basis (modulo replacement of &
by a slightly larger exponent). A system with finitely many solutions has been
called a general Roth system.

From the viewpoint of filtrations, Faltings and Wiistholz [4] gave a projec-
tive geometric picture of the set of (rational) solutions to a (related) system
of inequalities. In particular, it is coordinate-free. Faltings [3] has found a re-
semblance between filtered vector spaces and filtered isocrystals and he called
semi-stable (of slope zero) a filtered vector space which gives rise to a general
Roth system.

In the present article, we aim at proving that the category of general Roth
systems, namely, the category of semi-stable filtered vector spaces of slope zero
forms a neutral Tannakian category. It means that the category is equivalent
to the category of finite dimensional representations of an affine group scheme
over the base field. A key lemma is the one stating that a tensor product of
semi-stable filtered vector spaces is again semi-stable. The lemma was used for
a second proof of the subspace theorem of Schmidt and Schlickewei by Faltings
and Wiistholz [4].

Reversing the order of reasoning, we obtain a new proof of the key lemma
which depends on the subspace theorem. Note that it is not a tautology, be-
cause the original proof of Schmidt and Schlickewei does not require the key
lemma. The subspace theorem provides us with a simple numerical criterion
(Theorem 2.8) for a filtered vector space to be semi-stable. The key lemma is
then a consequence (Corollary 2.9) of the criterion.

Our proof is elementary. The difficult parts are hiding in the subspace
theorem and in Minkowski’s theorem on the geometry of numbers. In Section 1,
we make precise various definitions. The section is expositary. In Section 2, we
give the new proof of the key lemma.

NoOTATION. — Let R be the field of real numbers. By ¢ > 0, we mean a real
number ¢ is large enough according to the context. The symbol ‘o’ indicates
composition of morphisms.
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1. Category of linear inequalities

Let k be a finite extension field of the rational number field and let L be an
algebraic extension field of k.

DEFINITION 1.1 (filtration, slope, and weight [9, p. 82])
For a finite dimensional k-vector space V', a family F'* of L-vector spaces

F'VcL®,V (ieR)

is called an L-filtration on V if and only if the conditions

F'V O FV (i <j),

F7'V=L®,V, F'V=0 (i>0) and

F'V = F'V

j<i
are satisfied. We denote the associated graduation by
grV(V,F*) = FYV/F*TV  (w € R),
where
FUry = | PV
j>w

The slope M of the filtration is a real number

1
MV, F*) = di YV, F*).
(V. F*) dimkV%w iy, gr(V, F*)

The slope of the zero-dimensional vector space is not defined. The real num-
bers w such that gr*’(V, F'*) # 0 are called the weights of the filtration. We often
say V is an L-filtered k-vector space, instead of saying that (V, F'*) is a k-vector
space with an L-filtration. Similarly, we omit F** from M (V, F*) or gr**(V, F*)
and abbreviate F*V to V.

DEFINITION 1.2 (subfiltration and quotient filtration). — Let W be a sub-
space over k of V. The L-filtration on W given by

Wi=(Le,W)nV' (i €R)
is the sub-L-filtration on W of V.. The L-filtration on V/W defined as
(V/W)i=(Vi+ Loy W)/Ler W (i €R)
is the quotient L-filtration on V/W of V.

LEMMA 1.3 (see [4, p. 116]). — Let W be a proper subspace over k of V, and
F* an L-filtration on V. If we endow W with the subfiltration and V/W with
the quotient filtration, then we have

M(V)dim, V = M (W) dimg W + M (V/W) dimy, (V/W).
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Proof. — By definition, the sequences
0—-W"Y — VY — (V/W)¥ -0,
0— W0 — vyttt — (VW) — 0
are both exact. By diagram chase,

0—-g"W — gV — g (V/W) -0

is exact, too. The above equality follows at once. O
EXAMPLE 1.4. — Let v and u be non-zero elements of a k-vector space V' such
that

V = kv ® ku.

We attach to V the following filtration:
L®,V fori<o,
Vi={Lv+4u) for0<i<l,
0 for ¢ > 1.
The subfiltration on W = kv is
i JL®p W for ¢ <0,
W= {0 for i > 0.
For the subspace U = ku, the quotient filtration on V/U becomes

. L (V/U) fori<1,
(V/U)_{o for i > 1.

This is especially telling that although there is a canonical isomorphism of
W =W/WNU onto V/U = (W 4+ U)/U as vector spaces, they are not iso-
morphic as filtered vector spaces. In general, a subquotient filtration is not
necessarily defined.

REMARK 1.5. — As is easily seen, in the case U C W C V, the subquotient
L-filtration on W/U of V is well-defined.

DEFINITION 1.6 (filtered homomorphism [4, p. 117]). — For  L-filtered k-
vector spaces V and W, a filtered homomorphism f:V — W is a k-linear map
such that

fVH cWw? (ieR)
when extended over L. It is said to be strict if
fFVY =[Le f(V)]NnW* (i eR).

The strictness of f means that the k-vector space V/ Ker f with the quotient fil-
tration of V' (the coimage Coim f of f) is isomorphic to the k-vector space f(V)
with the subfiltration of W (the image Im f of f).
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REMARK 1.7. — For a subspace W over k of V, the canonical maps W — V
and V. — V/W are strictly filtered with respect to the induced filtrations.
A composition of filtered homomorphisms is filtered. In Example 1.4, the
canonical map W — V/U is filtered but not strict. In Remark 1.5, the canonical
map W — V/U is strict.

LEMMA 1.8. — If a filtered homomorphism f:V — W s bijective as a
k-linear map, then

M(V) < M(W).
Moreover, the equality is valid if and only if it is an isomorphim of filtered
vector spaces.

Proof. — Induction on the number of weights of V. First note that for the
proof, the case L = k is sufficient.

When V has only one weight, the whole claim is almost trivial.

Suppose V has plural weights and w is the largest among them. Let the inclu-
sionmap be g: V¥ — V. We endow V/Im g and W/ Im fog with the respective
quotient filtrations (the cokernels Cokerg and Coker f o g). The number of
weights of Im g is one, and the number of weights of Coker g is fewer than the
number of weights of V. The inductive assumption yields

M(Img) < M(Im fog) and M(Cokerg) < M(Coker f o g).
From Lemma 1.3 we get the inequality we wanted. Furthermore, when we have
M(V) = M (W), the above inequalities must be equalities. By the inductive
hypothesis,
Img~Imfog and Cokerg=~ Coker fog.
In particular,
grilmg~gr'Imfog and gr'Cokerg~ gr'Cokerfog (i €R).
By the third exact sequence in the proof of Lemma 1.3, we obtain
gr' Ve~ gr'W (i € R),
hence V.~ W. O
LEMMA 1.9. — If a filtered homomorphism f:V — W is injective as a k-
linear map, then
M((V)dim, V < M(W) dimy, W.
Proof. — By definition, the induced morphism
V —1Imf

is filtered. Since it is also an isomorphism of k-vector spaces, we obtain
by Lemma 1.8 M (V) < M(Im f). From Lemma 1.3, we get the desired in-
equality. O
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