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DIFFERENTIAL GALOIS THEORY FOR AN
EXPONENTIAL EXTENSION OF C((z))

by Magali Bouffet

Abstract. — In this paper we study the formal differential Galois group of linear
differential equations with coefficients in an extension of C((z)) by an exponential of
integral. We use results of factorization of differential operators with coefficients in
such a field to give explicit generators of the Galois group. We show that we have very
similar results to the case of C((z)).

Résumé (Théorie de Galois différentielle). — On étudie le groupe de Galois diffé-
rentiel formel d’équations différentielles linéaires dont les coefficients sont dans une
extension exponentielle de C((z)). On utilise des résultats de factorisation d’opérateurs
différentiels à coefficients dans un tel corps pour expliciter des générateurs du groupe
de Galois. On obtient des résultats très similaires au cas du corps C((z)).

1. Introduction

The motivation of this work is to write a local differential Galois theory for
linear differential equations with coefficients admitting essential singularities.
The aim is to generalize the case of differential equations having germs of
meromorphic functions as coefficients. We only treat here the formal case, and
work with the field K = C((z)) of formal power series. It is a natural idea to
add to this field exponential functions, as these ones are the new functions that
appear to build solutions of equations with coefficients in K.
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Let’s first fix some notations. We endow the field K with the derivation

δ = −z2 d
dz

·

We set
X = e1/z and L = C

(
(z)

)(
(X)

)
.

We extend the derivation δ to L by δ(X) = X . We also endow the field K
with the z-adic valuation vz and the field L with the X-adic valuation vX . We
notice that this field is complete with respect to this valuation. We want to
study linear differential equations with coefficients in L from the differential
Galois theory viewpoint. In particular we want to determine the structure of
the differential Galois group. For this we proceed like for the field K and we
obtain very similar results. Let’s recall the well-known results for the field K.

Definition 1.1. — We call a universal differential extension of a differential
field k a k-algebra R satisfying the following conditions:

• the derivation defined on k extends to R;
• R is simple (i.e. R has no non-trivial differential ideal);
• every homogeneous linear differential equation with coefficients in k has

all its solutions in R;
• R is minimal, that is R is generated over k by all the solutions (and their

derivatives) of homogeneous linear differential equations with coefficients in k.

For any differential field such an extension exists and is unique up to dif-
ferential isomorphism. In the case of K, we can explicitly write the universal
differential extension. It is given by the following symbols:

R = C
(
(z)

)[
{zm}m∈C, {e(p)}p∈P , "

]

where P =
⋃

n≥1 z−1/nC[z−1/n], and the following relations:

za+b = zazb, e(p1 + p2) = e(p1)e(p2)

and za = za ∈ C((z)) for a ∈ Z. The derivation on R is given by

(za)′ = aza,
(
e(p)

)′ = pe(p), "′ = 1.

(We also write ′ the derivation zd/dz on C((z))).
We can interpret the preceding symbols as functions, which makes sense on

suitable sectors. The symbol za can be interpreted as the function ea log(z), " as
a logarithm function and e(p) as the function exp(

∫
p/zdz).

Once we have the universal differential extension of K we define K-
differential automorphisms of R as follows:

• the formal monodromy γ is defined by

γ(za) = e2iπaza, γ(") = " + 2iπ, γ
(
e(p)

)
= e

(
γ(p)

)
;
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• the exponential torus is defined by: for all h ∈ Hom(P , C∗), σh is given by

σh(za) = za, σh(") = ", σh

(
e(p)

)
= h(p)e(p).

Then the exponential torus and the formal monodromy generate the differ-
ential Galois group of the extension R/C((z)) as a pro-algebraic group.

We show in this paper that we have the same kind of result for the field L.
We give an explicit description of the universal differential extension of L and
we give topological generators of the differential Galois group as a pro-algebraic
group.

The first thing to do is then to determine all the solutions of homogeneous
linear differential equations with coefficients in L. For this we show that it
suffices to solve order 1 homogeneous and non-homogeneous equations with
coefficients in the algebraic closure of L. Let’s write

K̂∞ =
⋃

n≥1

C
(
(z1/n)

)
.

Then K̂∞ is the algebraic closure of K. The algebraic closure of L is

L̂∞ =
⋃

m≥1,n≥1

C
(
(z1/n)

)(
(X1/m)

)
.

(The previous valuations and derivations extend to these fields). We notice that
the field of constants of L̂∞ as well as the one of all intermediate differential
fields is C.

We need the following result of factorization that can be found in [1]:

Theorem. — Let P ∈ L̂∞[δ] a non constant differential operator. Then P
can be factored in product of order 1 operators in the ring L̂∞[δ].

A right factor immediately gives a formal solution by solving an equation
of the type δ(y) = ay. We show by analyzing this factorization that either
the factors “commute” in a certain sense, either some order 1 non-homogeneous
equations appear.

2. Formal classification of differential equations

We want to determine the solutions of all linear differential equations with
coefficients in L, but we are interested only in “new” solutions that are not
already in L̂∞. Thus we start by classifying order 1 equations over L̂∞.

2.1. Order 1 equations
Homogeneous equations. — We want to classify equations of the type
δ(y) = ay, with a ∈ L̂∞.
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Definition 2.1.1. — The equations δ(y) = ay and δ(y) = by, with a, b ∈ L̂∞,
are said to be equivalent over L̂∞ if there exists f ∈ L̂∞\{0} such that
b − a = δ(f)/f . (The solutions of δ(y) = ay are then the solutions of δ(y) = by
multiplied by f.)

To classify the order 1 homogeneous equations we have to determine the set

Log =
{
δ(f)/f, f ∈ L̂∞

}

to study the quotient L̂∞/Log. Some computations show that

Log =
{
λ + µz +

∑
r>0 αrz1+r/n +

∑
r>0 βrXr/m;

n, m ≥ 1,λ, µ ∈ Q,αr ∈ C, p ≥ 1,βr ∈ C((z1/p))
}

.

Let M be a Q-vector space such that M ⊕ Q = C. We set:

Q =
⋃

m≥1,n≥1

X−1/mC
(
(z1/n)

)
[X−1/m],

P =
{ ⋃

n≥1

z−1/nC[z−1/n]
}
∪

⋃

n≥1

{ n−1∑

r=1

αrz
r/n, αr ∈ C

}
.

Then M ⊕Mz⊕P⊕Q classifies the order 1 homogeneous linear differential
equations with coefficients in L̂∞. We study each of these sets to define symbolic
solutions. We have the following symbols:

{Xm}m∈M , {zm}m∈M ,
{
e(p)

}
p∈P ,

{
g(q)

}
q∈Q.

The solutions of the equation

δ(y) = (m + m̃z + p + q)y

are given by
y = aXmzm̃e(p)g(g),

with a ∈ C, and those of the equivalent equations by fy, with f ∈ L̂∞\{0}.
We observe that these symbols are algebraically independent over L̂∞.
As for the symbols defined to solve equations over the field K these symbols

can be interpreted as functions, which makes sense on suitable sectors. The
symbols Xm and zm can be interpreted as the function em log(X) and em log(z),
the symbols e(p) as the functions exp(

∫
−p/z2dz) and the symbols g(q) as

the functions exp(
∫
−q/z2dz). The symbols e(p) correspond to the symbols

we recalled in the introduction for the field K. (We wrote them e(p) with
p ∈

⋃
n≥1 z−1/nC[z−1/n] with the derivation zd/dz. The second set comes

from this change of derivation. We do not obtain the function e1/z as it is
already in the base field.) The symbols g(q) are exponentials of “second level”.
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Non homogeneous equations. — We want to classify equations of the type
δ(y) = a, with a ∈ L̂∞.

Definition 2.1.2. — The equations δ(y) = a and δ(y) = b , with a, b ∈ L̂∞,
are said to be equivalent over L̂∞ if there exists f ∈ L̂∞ such that b−a = δ(f).
(The solutions of δ(y) = a are then the solutions of δ(y) = b added to f .)

We have to determine the set L̂∞/Der, where

Der =
{
δ(f), f ∈ L̂∞

}
.

Some computations show that the order 1 non-homogeneous equations are clas-
sified by

L̂∞/Der = {αz, α ∈ C}.
Thus we only have one equation to study. Let’s look at δ(y) = −z. We set " the
symbol solution of this equation. Then the solutions of all equivalent equations
are given by " + g, g ∈ L̂∞. The set of solutions of all the equations δ(y) = f ,
with f ∈ L̂∞, is {α" + g,α ∈ C, g ∈ L̂∞}.

The symbol " can be interpreted as a logarithm function and we notice that
it is algebraically independent over L̂∞ with the other symbols.

2.2. Differential operators and differential modules. — Let’s write
D = L̂∞[δ]. Let A ∈ Hom((L̂∞)n, (L̂∞)n). We define the differential module
MA associated to the system δ(Y ) = AY by the formulas

δ(ei) = −
∑

j

aijej ,

where (e1, . . . , en) is the standard basis of (L̂∞)n. To a differential operator
P = δn + an−1δn−1 + · · · + a0 we associate a differential system δ(Y ) = AY
with

A =





0 1 0 · · · 0

0 0 1
. . .

...
...

. . . . . . 0
0 · · · · · · 0 1

−a0 −a1 · · · · · · −an−1




.

The module MA is called the differential module associated to the opera-
tor P . The modules MA and (D/DP )∗ are isomorphic, where (D/DP )∗ =
Hom((D/DP ), L̂∞) is the dual of (D/DP ).

The two differential systems δ(Y ) = A1Y and δ(Y ) = A2Y are said equiva-
lent over L̂∞ if there exists U ∈ Gl((L̂∞)n, (L̂∞)n) such that

A1 = U−1δ(U) + U−1A2U.
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