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FILLING RADIUS AND SHORT CLOSED GEODESICS

OF THE 2-SPHERE

by Stéphane Sabourau

Abstract. — We show that the length of the shortest nontrivial curve among the
simple closed geodesics of index zero or one and the figure-eight geodesics of null index
provides a lower bound on the area and the diameter of the Riemannian 2-spheres.

Résumé (Rayon de remplissage et courtes géodésiques fermées de la 2-sphère)
Nous montrons que la longueur de la plus courte courbe non triviale parmi les

géodésiques simples fermées d’indice zéro ou un et les géodésiques en huit d’indice nul
fournit une minoration sur l’aire et le diamètre des deux-sphères riemanniennes.

1. Introduction

Let M be a closed connected smooth Riemannian manifold of dimension n.
The Riemannian metric g on M induces a distance dg on M .

The map i : (M,dg) ↪→ (L∞(M), ‖.‖) defined by i(x)(.) = distM (x, .) is an
embedding from the metric space (M,dg) into the Banach space L∞(M) of
all bounded functions on M with the sup-norm ‖.‖. This natural embedding
is a (strong) isometry between metric spaces, i.e., it preserves the distances.
Note that Riemannian embeddings of closed manifolds into Euclidean spaces
are not isometric in this sense. Considering M isometrically embedded in the
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Banach space L∞(M), we define Uδ(M) as the δ-tubular neighborhood of M
in L∞(M). The homology coefficients will be in Z, if M is orientable, and in Z2,
otherwise.

Definition. — The filling radius ofM , denoted FillRad(M), is the infimum of
positive reals δ such that (iδ)∗([M ]) = 0 ∈ Hn(Uδ(M)), where iδ : M ↪→ Uδ(M)
is the inclusion and [M ] ∈ Hn(M) is the fundamental class of M .

In this paper, we show the following curvature free estimate.

Theorem 1.1. — Let M be a Riemannian 2-sphere, then

(1.1) FillRad(M) ≥
1

12
scg(M)

where scg(M) denotes the length of the shortest nontrivial closed geodesic on M .

This statement admits a stronger version in which occur the Morse index
and the number of self-intersection points of closed geodesics. Note, however,
that the constant involved is not as good as in the first version.

Main Theorem 1.2. — Let M be a Riemannian 2-sphere, then

(1.2) FillRad(M) ≥
1

20
L(M)

where L(M) is the length of the shortest nontrivial curve among the simple
closed geodesics of index zero or one and the figure-eight geodesics of null index.

For metrics all of whose geodesics are non-degenerate (bumpy metrics) the
same inequality holds if we replace L(M) by L(M), where L(M) represents
the length of the shortest nontrivial curve among the simple closed geodesics
of index 1 and the figure-eight geodesics of null index.

Some examples illustrating the different cases of the Main Theorem are pre-
sented in this paper (see Remark 4.10).

Before going further, let us review some known results to which these in-
equalities are related.

These two theorems extend to the simply connected case some filling radius
estimates related to the 1-dimensional systole.

The 1-dimensional systole of a non-simply connected closed Riemannian
manifold (M, g) is defined as the infimum of the lengths of noncontractible
closed curves. This lower bound, denoted sys1(M, g), is attained by the length
of a closed geodesic.

In [17] (see also [7], [18] and [19]), M. Gromov showed that every essential
manifold of dimension n satisfies the isosystolic inequality

(1.3) Vol(M, g) ≥ Cn sys1(M, g)n

where Cn is a positive constant depending only on n.
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In the above statement, whose converse was established in [3], a closed mani-
fold M is said to be essential if there is a map f from M to a K(π, 1) space such
that f∗([M ]) 6= 0. In particular, T n,RPn and all closed aspherical manifolds
are essential.

Isosystolic inequalities on surfaces were previously established in [33], [1], [8],
[9, p. 43] and [21]. An inequality similar to (1.3) also holds for the stable systole
under suitable topological conditions (see [19], [17], [22], [5], [4] and [24]).

Examples of non-essential manifolds with “long” systole and “small” volume
can easily be constructed. The product metric on S1 × S2 where the length
of S1 is long and the area of S2 is small provides such an example. However,
they may still have a short contractible closed geodesic whose length is bounded
from above in terms of the volume.

For Riemannian 2-spheres, C. Croke showed in [12] that

Area(M) ≥
1

(31)2
scg(M)2, Diam(M) ≥

1

9
scg(M).

It is unknown whether or not the length of the shortest nontrivial closed
geodesic provides a lower bound on the volume of any non-essential manifold
of dimension greater than two. Under some curvature assumptions, upper
bounds on the length of the shortest nontrivial closed geodesic exist (see [38],
[35] and [30] for general results).

The proof of M. Gromov’s isosystolic inequality (1.3) rests on the two fol-
lowing filling radius inequalities.

Theorem 1.3 (M. Gromov). — Let M be a complete Riemannian n-manifold,
then

FillRad(M) ≥
1

6
sys1(M) if M is essential,(1.4)

FillRad(M) ≤ cn Vol(M)1/n for some cn > 0.(1.5)

In particular, the first inequality holds for all the closed surfaces except the
sphere. The second inequality, more difficult to establish (though in the case
of the sphere S2 it may be obtained in a more elementary way), takes the form

FillRad(S2) ≤ Area(S2)
1
2 for the 2-sphere S2 (see [17, p. 128]).

Thus, the inequalities (1.1) and (1.2) lead to the following corollary which
improves C. Croke’s result providing an alternative proof.

Corollary 1.4. — Let M be a Riemannian 2-sphere, then

Area(M) ≥
1

(12)2
scg(M)2,(1.6)

Area(M) ≥
1

(20)2
L(M)2.(1.7)
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For bumpy metrics, we can replace L(M) by L(M) in the above inequalities.
Note that the length of a simple closed geodesic around the waist of an hourglass
figure does not provide a “good” lower bound on the area as it can be made
arbitrarily small while the area remains constant. These closed geodesics, which
still are simple and have a null index after slight perturbations of the metric
into a bumpy one, can actually be ignored to give a better bound on the area.

Note that inequality (1.6) is not optimal (C. Croke conjectures that the ex-
tremal sphere is composed of two copies of flat equilateral triangles glued to-
gether along their boundaries) and that sharp isosystolic inequalities are known
only for the 2-torus, the projective plane and the Klein bottle (see [7], [33], [6]
and [36]).

The proof of the Main Theorem rests on a minimax principle derived from
Morse Theory on the space of 1-cycles Z1(M,Z) on M . This principle, based
on F. Almgren’s isomorphism π1(Z1(S

2,Z), {0}) ' H2(S
2,Z) ' Z (see [2] and

Theorem 2.4 for a more general version), has been established by F. Almgren
and J. Pitts using geometric measure theory and has been used by E. Calabi
and J. Cao in [10]. The use of the space of 1-cycles rather than the ordinary free
loop space allows us to cut and paste closed curves using several component
loops. This minimax principle proceeds as follows.

Let us consider the one-parameter families (zt)0≤t≤1 of 1-cycles on M which
satisfy the following conditions:

(C1) zt starts and ends at null-currents,

(C2) zt induces a nontrivial class [z] in π1(Z1(M,Z), {0}).

We define the minimax value

L1(M) := inf
[z]6=0

sup
0≤t≤1

mass(zt).

For bumpy metrics, we introduce other constructions as follows.

The previous global minimax principle extends to the nontrivial groups
π1(Z

≤κ1

1 (M),Z≤κ0

1 (M)), where 0 ≤ κ0 < κ1 and

Z≤κ
1 (M) =

{

z ∈ Z1(M,Z) | mass(z) ≤ κ
}

.

We refer to Section 4.1 for further details. The lowest positive minimax value
of these local minimax processes is noted L′

1(M). We show that L′
1(M) agrees

with the mass L′′
1(M) of the shortest 1-cycle of index 1. Here, the index of a

1-cycle of mass κ is defined by

indZ1
(z) = min

{

i ∈ N | πi(Z
<κ
1 (M) ∪ {z},Z<κ

1 (M)) is nontrivial
}

.

Further, we show that scg(M) ≤ L′
1(M) = L′′

1(M) ≤ L1(M).

We also introduce a new curve-shortening process which permits us to prove
the following
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Theorem 1.5. — Let M be a bumpy Riemannian 2-sphere, then

FillRad(M) ≥
1

20
L′′

1(M),

where L′′
1(M) is the length of the shortest 1-cycle of index 1.

We show then that the shortest 1-cycle of index 1 for bumpy metrics is either
a simple closed geodesic of index 1 or a figure-eight geodesic of null index. This
immediately leads to the Main Theorem.

Contrary to L′′
1(M), the invariant L1(M) provides no universal lower bound

on the filling radius of the 2-sphere. More precisely, we have

Theorem 1.6. — There exists a sequence gn of Riemannian metrics on S2

which satisfies

lim
n→∞

FillRad(S2, gn)

L1(S2, gn)
= 0.

Using techniques involved in the proof of Theorem 1.1, we also prove

Theorem 1.7. — Let M be a Riemannian 2-sphere of diameter Diam(M),
then

scg(M) ≤ 4 Diam(M).

For other simply connected manifolds, it is still unknown whether or not
a similar inequality holds. Note that C. Croke already showed in [12] that
scg(M) ≤ 9 Diam(M) for 2-spheres. This inequality was then improved with
the constant 5 by M. Maeda in [26].

Theorem 1.7 may also be derived from Theorem 1.1 and the sharp general
filling inequality FillRad(M) ≤ 1

3 Diam(M) established by M. Katz in [23].
However, we present its short proof because it illustrates in a simple way some
techniques used in this paper.

After having written the final version of this paper, the author learned that
A. Nabutovsky and R. Rotman have independently established similar results.
Specifically, on 2-spheres, they have obtained in [29] the same improvement for
the diameter lower bound as us (cf. Theorem 1.7) and a better one for the area
lower bound ( 1

64 instead of 1
144 in (1.6)). They have also obtained in [28] a

lower bound on the filling radius of any closed Riemannian manifold in terms
of the mass of the shortest stationary 1-cycle.

We refer the reader to the recent survey [13] and the references therein for
an account of further curvature-free geometric inequalities.

In Section 2, we study a minimax principle on the space of 1-cycles which
yields a nontrivial closed geodesic on the 2-sphere. Then, we introduce a new
curve-shortening process. In Section 3, we illustrate the general use of this
minimax principle and show that the length of the shortest closed geodesic on
the 2-sphere provides a lower bound on the filling radius. Section 4 is devoted to
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