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NON-SUPERSINGULAR HYPERELLIPTIC JACOBIANS

BY YURI G. ZARHIN

ABSTRACT. — Let K be a field of odd characteristic p, let f(x) be an irreducible
separable polynomial of degree n > 5 with big Galois group (the symmetric group
or the alternating group). Let C be the hyperelliptic curve y? = f(x) and J(C)
its jacobian. We prove that J(C') does not have nontrivial endomorphisms over an
algebraic closure of K if either n > 7 or p # 3.

RESUME (Jacobiennes hyperelliptiques non supersinguliéres). —  Soient K un corps
de caractéristique impaire p et f(z) un polynéme irréductible séparable dans K|[z] de
degré n > 5, avec grand groupe de Galois (le groupe symétrique ou le groupe alterné).
Soit C' la courbe hyperelliptique y2 = f(z) et J(C) sa jacobienne. Nous montrons que
J(C) n’a pas d’endomorphisme non trivial sur une cléture algébrique de K sin > 7

ou p # 3.

1. Introduction

Let K be a field and K|, its algebraic closure. Assuming that char(K) = 0,
the author [25] proved that the jacobian J(C') = J(Cy) of a hyperelliptic curve

C=0C: y* = f(x)
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has only trivial endomorphisms over K, if the Galois group Gal(f) of the
irreducible polynomial f € K[xz] is “very big”. Namely, if n = deg(f) > 5 and
Gal(f) is either the symmetric group S,, or the alternating group A,, then the
ring End(J(CY)) of K,-endomorphisms of J(Cy) coincides with Z. Later the
author [25], [29] extended this result to the case of positive char(K) > 2 but
under the additional assumption that n > 9, i.e., the genus of C is greater or
equal than 4. We refer the reader to [15], [16], [9], [10], [14], [11], [25], [27], [29],
(28], [30] for a discussion of known results about, and examples of, hyperelliptic
jacobians without complex multiplication.

The aim of the present paper is to extend this result to the case when either
n > 7 or when n > 5 but char(K) > 3. Notice that it is known [25] that in
those cases either End(J(C)) = Z or J(C) is a supersingular abelian variety
and the real problem is how to prove that J(C) is not supersingular.

We also discuss the case of two-dimensional J(C') in characteristic 3.

2. Main result

Throughout this paper we assume that K is a field of characteristic p different
from 2. We fix its algebraic closure K, and write Gal(K) for the absolute Galois
group Aut(K,/K).

THEOREM 2.1. — Let K be a field with p = char(K) > 2, K, its algebraic
closure, f(x) € Klz| an irreducible separable polynomial of degree n. Let us
assume that Gal(f) = S, or A,,. Suppose that n enjoys one of the following
properties:

(i) n="7ors8;

(ii) n=>5 or 6. In addition, p = char(K) > 3.
Let Cy be the hyperelliptic curve y*> = f(z). Let J(Cy) be its jacobian,
End(J(Cy)) the ring of K,-endomorphisms of J(Cy). Then End(J(Cy)) = Z.

REMARK 2.2. — Replacing K by a suitable finite separable extension, we may
assume in the course of the proof of Theorem 2.1 that Gal(f) = A,,. Taking into
account that A, is simple non-abelian and replacing K by its abelian extension
obtained by adjoining to K all 2-power roots of unity, we may also assume that
K contains all 2-power roots of unity.

REMARK 2.3. — Let f(z) € K|[z] be an irreducible separable polynomial of
even degree n = 2m > 6 such that Gal(f) = S,,. Let a« € K, be a root of f
and K7 = K(«) be the corresponding subfield of K,. We have

f(z) = (z—a)fi(z)
with f1(z) € Ki[z]. Clearly, fi(x) is an irreducible separable polynomial
over K of degree n — 1 = 2m — 1, whose Galois group is S,,_1. It is also
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clear that the polynomials
W) = file+a), hi(z) = 2" h(1/2) € Kilo]
are irreducible separable of degree n — 1 with the same Galois group S,,_;.
The standard substitution
1 Y

z—a N7 (x — )™

xr1 =

establishes a birational isomorphism between C'; and a hyperelliptic curve
Chy = Y7 = ha(z1).

In light of results of [26], [30] and Remarks 2.2 and 2.3, our Theorem 2.1 is
an immediate corollary of the following auxiliary statement.

THEOREM 2.4. — Let K be a field with p = char(K) > 2, K, its algebraic
closure, f(x) € Klz| an irreducible separable polynomial of degree n. Let us
assume that n and the Galois group Gal(f) of [ enjoy one of the following
properties:

(i) n=>5 and Gal(f) = As;

(ii) n =7 and Gal(f) = A;. In addition, p = char(K) > 3.
Let C be the hyperelliptic curve y* = f(x) and let J(C) be the jacobian of C.
Then J(C) is not a supersingular abelian variety.

We will prove Theorem 2.4 in Section 3.

Throughout the paper we write EndO(X ) for the endomorphism algebra
End(X) ® Q of an abelian variety X over an algebraically closed field F.
Recall [25] that the semisimple Q-algebra End®(X) has dimension (2 dim(X))?
if and only if p := char(F,) # 0 and X is a supersingular abelian variety.
We write Hl, is the quaternion Q-algebra unramified exactly at p and oco. It is
well known that if X is a supersingular abelian variety in characteristic p then
End’(X) is isomorphic to the matrix algebra M, (H,) of size g := dim(X)
over Hl,. We will use freely these facts throughout the paper.

3. Proof of Theorem 2.4
We deduce Theorem 2.4 from the following statement.

THEOREM 3.1. — Let K be a field with p = char(K) > 2, K, its algebraic
closure, Let n = q be an odd prime, f(x) € Klz] an irreducible separable
polynomial of degree q. Let us assume that the Galois group Gal(f) of f
is La(q) := PSLao(F,), and that it acts doubly transitively on the roots of f.
Suppose that either ¢ =5 or q = 7. Let C be the hyperelliptic curve y* = f(x)
and let J(C) be the jacobian of C. If J(C) is a supersingular abelian variety
thenn =5 and p = 3.
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Proof of Theorem 2.4 (modulo Theorem 3.1). — If n. =5 then A5 = Ly(5) and
we are done. Suppose that n = 7. It is well-known that the simple non-abelian

sroup Lo(7) = Ls(2) := PSLs(F2)

acts doubly transitively on the 7-element projective plane P?(F3) and therefore
is isomorphic to a doubly transitive subgroup of A7. Hence there exists a finite
algebraic extension K7 of K such that the Galois group of f over K is Lo(7)
acting doubly transitively on the roots of f(z). Applying Theorem 3.1 to K;
and f, we conclude that if 3 # char(K;) = char(K) = p then J(C) is not
supersingular. o

The following results will be used in order to prove Theorem 3.1.

LEMMA 3.2. — Let K be a field with char(K) # 2 K, its algebraic closure,
Gal(K) = Aut(K,) the Galois group of K. Let f(x) € K[z] be an irreducible
separable polynomial of odd degree n. Let us assume that n > 5 and the Galois
group Gal(f) of f acts doubly transitively on the roots of f(x). Let C be the
hyperelliptic curve y* = f(x) and let J(C) be the jacobian of C. Let J(C)a be
the group of points of order 2 in J(C)(K,) viewed as Fa-vector space provided
with a natural structure of Gal(K)-module.
Then the image of Gal(K) in Auty,(J(C)2) is isomorphic to Gal(f) and

Endgai(x) (J(C)2) = EndGal(f)(‘](C)Q) =TFs.

THEOREM 3.3. — Let F be a field with characteristic p > 2 and assume that F
contains all 2-power roots of unity. Let F, be an algebraic closure of F. Let
G # {1} be a finite perfect group. Suppose that g is a positive integer, X is
a supersingular g-dimensional abelian variety defined over F. Let End(X) be
the ring of all F,-endomorphisms of X and End’(X) = End(X) ® Q. Let
us assume that the image of Gal(F) in Aut(Xs) is isomorphic to G and the
corresponding faithful representation
p: G — Aut(X3) =2 GL(2¢,F3)
satisfies EndgXs = Fs.
Then there exists a surjective group homomorphism
m:G — G
enjoying the following properties:
(a) The group G is a perfect finite group. The kernel of w1 is an elementary
abelian 2-group.
(b) One may lift pm1 : G1 — Aut(Xs) to a faithful absolutely irreducible
symplectic representation
p:Gi — Autg, (Va(X))

of G1 over Q2 in such a way that the following conditions hold:
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> the character x of p takes values in Q;
> p(Gh) € (End"(X))*;
> the homomorphism from the group algebra Q[G4] to End’(X) in-
duced by p is surjective and identifies End®(X) = M, (H,) with the
direct summand of Q[G1] attached to x.
(¢) p divides the order of G and p <2g+ 1.

(d) Suppose that either every homomorphism from G to GL(g—1,F2) is trivial
or the G-module X5 is very simple in the sense of [26], [29], [31]. Then
ker my is a central cyclic subgroup of order 1 or 2.

LEMMA 3.4. — Let p be an odd prime. Let q be an odd prime and I' = SLo(Fy)
or PSLy(F,). Suppose that ¢ =5 or 7 and let us put g = %(q —1). Suppose
that Q[I'] contains a direct summand isomorphic to the matriz algebra M, (H,).
Then p=3 and g = 5.

Theorem 3.3 and Lemmas will be proven in Sections 5 and 4.

Proof of Theorem 3.1 (modulo Theorem 3.3 and Lemmas 3.2 and 3.4)
Let us put

X = J(C), G=PSLy(F,), g:%(q—l).

Clearly, either ¢ = 5, g =2 or ¢ = 7, g = 3. In both cases g = dim(X),
the group G is simple and GL(g — 1,F3) is solvable. It follows that every
homomorphism from G to GL(g — 1,F2) is trivial. It follows from Lemma 3.2
that the image of Gal(K) in Aut(X3) is isomorphic to G and the corresponding
faithful representation

p: G — Aut(X3) =2 GL(2¢,F3)

satisfies Endg Xo = Fs.
Let us assume that X is supersingular. We need to get a contradiction.
Applying Theorem 3.3, we conclude that there exist a finite perfect group G
and a surjective homomorphism

Ty G1 —» G = PSLQ(]Fq)

enjoying the following properties:
(i) either G; 2 G or Z; = ker(m) is a central subgroup of order 2 in Gy;
(ii) there exists a direct summand of Q[G1] isomorphic to My (H,)).

The well-known description of central extensions of PSLy(F,) when ¢ is
an odd prime [4, §4.15, Prop. 4.233] implies that either G; = PSLy(F,) or
G1 = SLa(Fy). Applying Lemma 3.4, we arrive to the desired contradiction. [
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