
Bull. Soc. math. France

132 (4), 2004, p. 617–634

NON-SUPERSINGULAR HYPERELLIPTIC JACOBIANS

by Yuri G. Zarhin

Abstract. — Let K be a field of odd characteristic p, let f(x) be an irreducible
separable polynomial of degree n ≥ 5 with big Galois group (the symmetric group
or the alternating group). Let C be the hyperelliptic curve y2 = f(x) and J(C)
its jacobian. We prove that J(C) does not have nontrivial endomorphisms over an
algebraic closure of K if either n ≥ 7 or p 6= 3.

Résumé (Jacobiennes hyperelliptiques non supersingulières). — Soient K un corps
de caractéristique impaire p et f(x) un polynôme irréductible séparable dans K[x] de
degré n ≥ 5, avec grand groupe de Galois (le groupe symétrique ou le groupe alterné).
Soit C la courbe hyperelliptique y2 = f(x) et J(C) sa jacobienne. Nous montrons que
J(C) n’a pas d’endomorphisme non trivial sur une clôture algébrique de K si n ≥ 7
ou p 6= 3.

1. Introduction

Let K be a field and Ka its algebraic closure. Assuming that char(K) = 0,
the author [25] proved that the jacobian J(C) = J(Cf ) of a hyperelliptic curve

C = Cf : y2 = f(x)
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has only trivial endomorphisms over Ka if the Galois group Gal(f) of the
irreducible polynomial f ∈ K[x] is “very big”. Namely, if n = deg(f) ≥ 5 and
Gal(f) is either the symmetric group Sn or the alternating group An then the
ring End(J(Cf )) of Ka-endomorphisms of J(Cf ) coincides with Z. Later the
author [25], [29] extended this result to the case of positive char(K) > 2 but
under the additional assumption that n ≥ 9, i.e., the genus of Cf is greater or
equal than 4. We refer the reader to [15], [16], [9], [10], [14], [11], [25], [27], [29],
[28], [30] for a discussion of known results about, and examples of, hyperelliptic
jacobians without complex multiplication.

The aim of the present paper is to extend this result to the case when either
n ≥ 7 or when n ≥ 5 but char(K) > 3. Notice that it is known [25] that in
those cases either End(J(C)) = Z or J(C) is a supersingular abelian variety
and the real problem is how to prove that J(C) is not supersingular.

We also discuss the case of two-dimensional J(C) in characteristic 3.

2. Main result

Throughout this paper we assume that K is a field of characteristic p different
from 2. We fix its algebraic closure Ka and write Gal(K) for the absolute Galois
group Aut(Ka/K).

Theorem 2.1. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, f(x) ∈ K[x] an irreducible separable polynomial of degree n. Let us
assume that Gal(f) = Sn or An. Suppose that n enjoys one of the following
properties:

(i) n = 7 or 8;

(ii) n = 5 or 6. In addition, p = char(K) > 3.

Let Cf be the hyperelliptic curve y2 = f(x). Let J(Cf ) be its jacobian,
End(J(Cf )) the ring of Ka-endomorphisms of J(Cf ). Then End(J(Cf )) = Z.

Remark 2.2. — Replacing K by a suitable finite separable extension, we may
assume in the course of the proof of Theorem 2.1 that Gal(f) = An. Taking into
account that An is simple non-abelian and replacing K by its abelian extension
obtained by adjoining to K all 2-power roots of unity, we may also assume that
K contains all 2-power roots of unity.

Remark 2.3. — Let f(x) ∈ K[x] be an irreducible separable polynomial of
even degree n = 2m ≥ 6 such that Gal(f) = Sn. Let α ∈ Ka be a root of f
and K1 = K(α) be the corresponding subfield of Ka. We have

f(x) = (x − α)f1(x)

with f1(x) ∈ K1[x]. Clearly, f1(x) is an irreducible separable polynomial
over K1 of degree n − 1 = 2m − 1, whose Galois group is Sn−1. It is also
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clear that the polynomials

h(x) = f1(x + α), h1(x) = xn−1h(1/x) ∈ K1[x]

are irreducible separable of degree n − 1 with the same Galois group Sn−1.

The standard substitution

x1 =
1

x − α
, y1 =

y

(x − α)m

establishes a birational isomorphism between Cf and a hyperelliptic curve

Ch1
: y2

1 = h1(x1).

In light of results of [26], [30] and Remarks 2.2 and 2.3, our Theorem 2.1 is
an immediate corollary of the following auxiliary statement.

Theorem 2.4. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, f(x) ∈ K[x] an irreducible separable polynomial of degree n. Let us
assume that n and the Galois group Gal(f) of f enjoy one of the following
properties:

(i) n = 5 and Gal(f) = A5;

(ii) n = 7 and Gal(f) = A7. In addition, p = char(K) > 3.

Let C be the hyperelliptic curve y2 = f(x) and let J(C) be the jacobian of C.
Then J(C) is not a supersingular abelian variety.

We will prove Theorem 2.4 in Section 3.

Throughout the paper we write End0(X) for the endomorphism algebra
End(X) ⊗ Q of an abelian variety X over an algebraically closed field Fa.

Recall [25] that the semisimple Q-algebra End0(X) has dimension (2 dim(X))2

if and only if p := char(Fa) 6= 0 and X is a supersingular abelian variety.
We write Hp is the quaternion Q-algebra unramified exactly at p and ∞. It is
well known that if X is a supersingular abelian variety in characteristic p then
End0(X) is isomorphic to the matrix algebra Mg(Hp) of size g := dim(X)
over Hp. We will use freely these facts throughout the paper.

3. Proof of Theorem 2.4

We deduce Theorem 2.4 from the following statement.

Theorem 3.1. — Let K be a field with p = char(K) > 2, Ka its algebraic
closure, Let n = q be an odd prime, f(x) ∈ K[x] an irreducible separable
polynomial of degree q. Let us assume that the Galois group Gal(f) of f
is L2(q) := PSL2(Fq), and that it acts doubly transitively on the roots of f .
Suppose that either q = 5 or q = 7. Let C be the hyperelliptic curve y2 = f(x)
and let J(C) be the jacobian of C. If J(C) is a supersingular abelian variety
then n = 5 and p = 3.
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Proof of Theorem 2.4 (modulo Theorem 3.1). — If n = 5 then A5
∼= L2(5) and

we are done. Suppose that n = 7. It is well-known that the simple non-abelian
group

L2(7) ∼= L3(2) := PSL3(F2)

acts doubly transitively on the 7-element projective plane P2(F2) and therefore
is isomorphic to a doubly transitive subgroup of A7. Hence there exists a finite
algebraic extension K1 of K such that the Galois group of f over K1 is L2(7)
acting doubly transitively on the roots of f(x). Applying Theorem 3.1 to K1

and f , we conclude that if 3 6= char(K1) = char(K) = p then J(C) is not
supersingular.

The following results will be used in order to prove Theorem 3.1.

Lemma 3.2. — Let K be a field with char(K) 6= 2 Ka its algebraic closure,
Gal(K) = Aut(Ka) the Galois group of K. Let f(x) ∈ K[x] be an irreducible
separable polynomial of odd degree n. Let us assume that n ≥ 5 and the Galois
group Gal(f) of f acts doubly transitively on the roots of f(x). Let C be the
hyperelliptic curve y2 = f(x) and let J(C) be the jacobian of C. Let J(C)2 be
the group of points of order 2 in J(C)(Ka) viewed as F2-vector space provided
with a natural structure of Gal(K)-module.

Then the image of Gal(K) in AutF2
(J(C)2) is isomorphic to Gal(f) and

EndGal(K)

(

J(C)2
)

= EndGal(f)

(

J(C)2
)

= F2.

Theorem 3.3. — Let F be a field with characteristic p > 2 and assume that F
contains all 2-power roots of unity. Let Fa be an algebraic closure of F . Let
G 6= {1} be a finite perfect group. Suppose that g is a positive integer, X is
a supersingular g-dimensional abelian variety defined over F . Let End(X) be
the ring of all Fa-endomorphisms of X and End0(X) = End(X) ⊗ Q. Let
us assume that the image of Gal(F ) in Aut(X2) is isomorphic to G and the
corresponding faithful representation

ρ̄ : G ↪−→ Aut(X2) ∼= GL(2g, F2)

satisfies EndGX2 = F2.

Then there exists a surjective group homomorphism

π1 : G1 −� G

enjoying the following properties:

(a) The group G1 is a perfect finite group. The kernel of π1 is an elementary
abelian 2-group.

(b) One may lift ρ̄π1 : G1 → Aut(X2) to a faithful absolutely irreducible
symplectic representation

ρ : G1 ↪−→ AutQ2
(V2(X))

of G1 over Q2 in such a way that the following conditions hold:
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. the character χ of ρ takes values in Q;

. ρ(G1) ⊂ (End0(X))∗;

. the homomorphism from the group algebra Q[G1] to End0(X) in-

duced by ρ is surjective and identifies End0(X) ∼= Mg(Hp) with the
direct summand of Q[G1] attached to χ.

(c) p divides the order of G and p ≤ 2g + 1.

(d) Suppose that either every homomorphism from G to GL(g−1, F2) is trivial
or the G-module X2 is very simple in the sense of [26], [29], [31]. Then
kerπ1 is a central cyclic subgroup of order 1 or 2.

Lemma 3.4. — Let p be an odd prime. Let q be an odd prime and Γ = SL2(Fq)
or PSL2(Fq). Suppose that q = 5 or 7 and let us put g = 1

2 (q − 1). Suppose
that Q[Γ] contains a direct summand isomorphic to the matrix algebra Mg(Hp).
Then p = 3 and q = 5.

Theorem 3.3 and Lemmas will be proven in Sections 5 and 4.

Proof of Theorem 3.1 (modulo Theorem 3.3 and Lemmas 3.2 and 3.4)
Let us put

X = J(C), G = PSL2(Fq), g =
1

2
(q − 1).

Clearly, either q = 5, g = 2 or q = 7, g = 3. In both cases g = dim(X),
the group G is simple and GL(g − 1, F2) is solvable. It follows that every
homomorphism from G to GL(g − 1, F2) is trivial. It follows from Lemma 3.2
that the image of Gal(K) in Aut(X2) is isomorphic to G and the corresponding
faithful representation

ρ̄ : G ↪−→ Aut(X2) ∼= GL(2g, F2)

satisfies EndGX2 = F2.

Let us assume that X is supersingular. We need to get a contradiction.
Applying Theorem 3.3, we conclude that there exist a finite perfect group G1

and a surjective homomorphism

π1 : G1 −� G = PSL2(Fq)

enjoying the following properties:

(i) either G1
∼= G or Z1 = ker(π1) is a central subgroup of order 2 in G1;

(ii) there exists a direct summand of Q[G1] isomorphic to Mg(Hp)).

The well-known description of central extensions of PSL2(Fq) when q is
an odd prime [4, §4.15, Prop. 4.233] implies that either G1 = PSL2(Fq) or
G1 = SL2(Fq). Applying Lemma 3.4, we arrive to the desired contradiction.
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