Bull. Soc. math. France 132 (4), 2004, p. 617–634

NON-SUPERSINGULAR HYPERELLIPTIC JACOBIANS

BY YURI G. ZARHIN

ABSTRACT. — Let K be a field of odd characteristic p, let f(x) be an irreducible separable polynomial of degree $n \geq 5$ with big Galois group (the symmetric group or the alternating group). Let C be the hyperelliptic curve $y^2 = f(x)$ and J(C) its jacobian. We prove that J(C) does not have nontrivial endomorphisms over an algebraic closure of K if either $n \geq 7$ or $p \neq 3$.

RÉSUMÉ (Jacobiennes hyperelliptiques non supersingulières). — Soient K un corps de caractéristique impaire p et f(x) un polynôme irréductible séparable dans K[x] de degré $n \ge 5$, avec grand groupe de Galois (le groupe symétrique ou le groupe alterné). Soit C la courbe hyperelliptique $y^2 = f(x)$ et J(C) sa jacobienne. Nous montrons que J(C) n'a pas d'endomorphisme non trivial sur une clôture algébrique de K si $n \ge 7$ ou $p \ne 3$.

1. Introduction

Let K be a field and K_a its algebraic closure. Assuming that char(K) = 0, the author [25] proved that the jacobian $J(C) = J(C_f)$ of a hyperelliptic curve

$$C = C_f : y^2 = f(x)$$

Texte reçu le 12 novembre 2003, accepté le 24 novembre 2003

YURI G. ZARHIN, Department of Mathematics, Pennsylvania State University, University Park, PA 16802 (USA) • *E-mail* : zarhin@math.psu.edu

²⁰⁰⁰ Mathematics Subject Classification. — 14H40, 14K05.

Key words and phrases. — Hyperelliptic jacobians, Endomorphisms of abelian varieties, Supersingular abelian varieties.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE © Société Mathématique de France

^{0037-9484/2004/617/\$ 5.00}

ZARHIN (YU.G.)

has only trivial endomorphisms over K_a if the Galois group $\operatorname{Gal}(f)$ of the irreducible polynomial $f \in K[x]$ is "very big". Namely, if $n = \deg(f) \ge 5$ and $\operatorname{Gal}(f)$ is either the symmetric group \mathbb{S}_n or the alternating group \mathbb{A}_n then the ring $\operatorname{End}(J(C_f))$ of K_a -endomorphisms of $J(C_f)$ coincides with \mathbb{Z} . Later the author [25], [29] extended this result to the case of positive $\operatorname{char}(K) > 2$ but under the additional assumption that $n \ge 9$, *i.e.*, the genus of C_f is greater or equal than 4. We refer the reader to [15], [16], [9], [10], [14], [11], [25], [27], [29], [28], [30] for a discussion of known results about, and examples of, hyperelliptic jacobians without complex multiplication.

The aim of the present paper is to extend this result to the case when either $n \ge 7$ or when $n \ge 5$ but $\operatorname{char}(K) > 3$. Notice that it is known [25] that in those cases either $\operatorname{End}(J(C)) = \mathbb{Z}$ or J(C) is a supersingular abelian variety and the real problem is how to prove that J(C) is *not* supersingular.

We also discuss the case of two-dimensional J(C) in characteristic 3.

2. Main result

Throughout this paper we assume that K is a field of characteristic p different from 2. We fix its algebraic closure K_a and write Gal(K) for the absolute Galois group $Aut(K_a/K)$.

THEOREM 2.1. — Let K be a field with p = char(K) > 2, K_a its algebraic closure, $f(x) \in K[x]$ an irreducible separable polynomial of degree n. Let us assume that $Gal(f) = S_n$ or A_n . Suppose that n enjoys one of the following properties:

(i) n = 7 or 8;

(ii) n = 5 or 6. In addition, p = char(K) > 3.

Let C_f be the hyperelliptic curve $y^2 = f(x)$. Let $J(C_f)$ be its jacobian, End $(J(C_f))$ the ring of K_a -endomorphisms of $J(C_f)$. Then End $(J(C_f)) = \mathbb{Z}$.

REMARK 2.2. — Replacing K by a suitable finite separable extension, we may assume in the course of the proof of Theorem 2.1 that $\operatorname{Gal}(f) = \mathbb{A}_n$. Taking into account that \mathbb{A}_n is simple non-abelian and replacing K by its abelian extension obtained by adjoining to K all 2-power roots of unity, we may also assume that K contains all 2-power roots of unity.

REMARK 2.3. — Let $f(x) \in K[x]$ be an irreducible separable polynomial of even degree $n = 2m \ge 6$ such that $\operatorname{Gal}(f) = \mathbb{S}_n$. Let $\alpha \in K_a$ be a root of f and $K_1 = K(\alpha)$ be the corresponding subfield of K_a . We have

$$f(x) = (x - \alpha)f_1(x)$$

with $f_1(x) \in K_1[x]$. Clearly, $f_1(x)$ is an irreducible separable polynomial over K_1 of degree n-1 = 2m-1, whose Galois group is \mathbb{S}_{n-1} . It is also

tome $132 - 2004 - n^{o} 4$

clear that the polynomials

$$h(x) = f_1(x + \alpha), \quad h_1(x) = x^{n-1}h(1/x) \in K_1[x]$$

are irreducible separable of degree n-1 with the same Galois group \mathbb{S}_{n-1} .

The standard substitution

$$x_1 = \frac{1}{x - \alpha}, \quad y_1 = \frac{y}{(x - \alpha)^m}$$

establishes a birational isomorphism between C_f and a hyperelliptic curve

$$C_{h_1}: y_1^2 = h_1(x_1).$$

In light of results of [26], [30] and Remarks 2.2 and 2.3, our Theorem 2.1 is an immediate corollary of the following auxiliary statement.

THEOREM 2.4. — Let K be a field with p = char(K) > 2, K_a its algebraic closure, $f(x) \in K[x]$ an irreducible separable polynomial of degree n. Let us assume that n and the Galois group Gal(f) of f enjoy one of the following properties:

(i) n = 5 and $\operatorname{Gal}(f) = \mathbb{A}_5$;

(ii) n = 7 and $\operatorname{Gal}(f) = \mathbb{A}_7$. In addition, $p = \operatorname{char}(K) > 3$.

Let C be the hyperelliptic curve $y^2 = f(x)$ and let J(C) be the jacobian of C. Then J(C) is not a supersingular abelian variety.

We will prove Theorem 2.4 in Section 3.

Throughout the paper we write $\operatorname{End}^0(X)$ for the endomorphism algebra $\operatorname{End}(X) \otimes \mathbb{Q}$ of an abelian variety X over an algebraically closed field F_a . Recall [25] that the semisimple \mathbb{Q} -algebra $\operatorname{End}^0(X)$ has dimension $(2\dim(X))^2$ if and only if $p := \operatorname{char}(F_a) \neq 0$ and X is a supersingular abelian variety. We write \mathbb{H}_p is the quaternion \mathbb{Q} -algebra unramified exactly at p and ∞ . It is well known that if X is a supersingular abelian variety in characteristic p then $\operatorname{End}^0(X)$ is isomorphic to the matrix algebra $\mathbb{M}_g(\mathbb{H}_p)$ of size $g := \dim(X)$ over \mathbb{H}_p . We will use freely these facts throughout the paper.

3. Proof of Theorem 2.4

We deduce Theorem 2.4 from the following statement.

THEOREM 3.1. — Let K be a field with p = char(K) > 2, K_a its algebraic closure, Let n = q be an odd prime, $f(x) \in K[x]$ an irreducible separable polynomial of degree q. Let us assume that the Galois group Gal(f) of f is $L_2(q) := PSL_2(\mathbb{F}_q)$, and that it acts doubly transitively on the roots of f. Suppose that either q = 5 or q = 7. Let C be the hyperelliptic curve $y^2 = f(x)$ and let J(C) be the jacobian of C. If J(C) is a supersingular abelian variety then n = 5 and p = 3.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

ZARHIN (YU.G.)

Proof of Theorem 2.4 (modulo Theorem 3.1). — If n = 5 then $\mathbb{A}_5 \cong L_2(5)$ and we are done. Suppose that n = 7. It is well-known that the simple non-abelian group

$$L_2(7) \cong L_3(2) := PSL_3(\mathbb{F}_2)$$

acts doubly transitively on the 7-element projective plane $\mathbb{P}^2(\mathbb{F}_2)$ and therefore is isomorphic to a doubly transitive subgroup of \mathbb{A}_7 . Hence there exists a finite algebraic extension K_1 of K such that the Galois group of f over K_1 is $L_2(7)$ acting doubly transitively on the roots of f(x). Applying Theorem 3.1 to K_1 and f, we conclude that if $3 \neq \operatorname{char}(K_1) = \operatorname{char}(K) = p$ then J(C) is not supersingular.

The following results will be used in order to prove Theorem 3.1.

LEMMA 3.2. — Let K be a field with $\operatorname{char}(K) \neq 2 K_a$ its algebraic closure, $\operatorname{Gal}(K) = \operatorname{Aut}(K_a)$ the Galois group of K. Let $f(x) \in K[x]$ be an irreducible separable polynomial of odd degree n. Let us assume that $n \geq 5$ and the Galois group $\operatorname{Gal}(f)$ of f acts doubly transitively on the roots of f(x). Let C be the hyperelliptic curve $y^2 = f(x)$ and let J(C) be the jacobian of C. Let $J(C)_2$ be the group of points of order 2 in $J(C)(K_a)$ viewed as \mathbb{F}_2 -vector space provided with a natural structure of $\operatorname{Gal}(K)$ -module.

Then the image of $\operatorname{Gal}(K)$ in $\operatorname{Aut}_{\mathbb{F}_2}(J(C)_2)$ is isomorphic to $\operatorname{Gal}(f)$ and

$$\operatorname{End}_{\operatorname{Gal}(K)}(J(C)_2) = \operatorname{End}_{\operatorname{Gal}(f)}(J(C)_2) = \mathbb{F}_2.$$

THEOREM 3.3. — Let F be a field with characteristic p > 2 and assume that F contains all 2-power roots of unity. Let F_a be an algebraic closure of F. Let $G \neq \{1\}$ be a finite perfect group. Suppose that g is a positive integer, X is a supersingular g-dimensional abelian variety defined over F. Let $\operatorname{End}(X)$ be the ring of all F_a -endomorphisms of X and $\operatorname{End}^0(X) = \operatorname{End}(X) \otimes \mathbb{Q}$. Let us assume that the image of $\operatorname{Gal}(F)$ in $\operatorname{Aut}(X_2)$ is isomorphic to G and the corresponding faithful representation

$$\bar{\rho}: G \longrightarrow \operatorname{Aut}(X_2) \cong \operatorname{GL}(2g, \mathbb{F}_2)$$

satisfies $\operatorname{End}_G X_2 = \mathbb{F}_2$.

Then there exists a surjective group homomorphism

$$\pi_1:G_1 \longrightarrow G$$

enjoying the following properties:

- (a) The group G_1 is a perfect finite group. The kernel of π_1 is an elementary abelian 2-group.
- (b) One may lift $\bar{\rho}\pi_1 : G_1 \to \operatorname{Aut}(X_2)$ to a faithful absolutely irreducible symplectic representation

$$\rho: G_1 \longrightarrow \operatorname{Aut}_{\mathbb{O}_2}(V_2(X))$$

of G_1 over \mathbb{Q}_2 in such a way that the following conditions hold:

tome $132 - 2004 - n^{o} 4$

620

- \triangleright the character χ of ρ takes values in \mathbb{Q} ;
- $\triangleright \rho(G_1) \subset (\operatorname{End}^0(X))^*;$
- ▷ the homomorphism from the group algebra $\mathbb{Q}[G_1]$ to $\operatorname{End}^0(X)$ induced by ρ is surjective and identifies $\operatorname{End}^0(X) \cong \operatorname{M}_g(\mathbb{H}_p)$ with the direct summand of $\mathbb{Q}[G_1]$ attached to χ .
- (c) p divides the order of G and $p \leq 2g + 1$.
- (d) Suppose that either every homomorphism from G to GL(g-1, F₂) is trivial or the G-module X₂ is very simple in the sense of [26], [29], [31]. Then ker π₁ is a central cyclic subgroup of order 1 or 2.

LEMMA 3.4. — Let p be an odd prime. Let q be an odd prime and $\Gamma = \operatorname{SL}_2(\mathbb{F}_q)$ or $\operatorname{PSL}_2(\mathbb{F}_q)$. Suppose that q = 5 or 7 and let us put $g = \frac{1}{2}(q-1)$. Suppose that $\mathbb{Q}[\Gamma]$ contains a direct summand isomorphic to the matrix algebra $M_g(\mathbb{H}_p)$. Then p = 3 and q = 5.

Theorem 3.3 and Lemmas will be proven in Sections 5 and 4.

Proof of Theorem 3.1 (modulo Theorem 3.3 and Lemmas 3.2 and 3.4) Let us put

$$X = J(C), \quad G = \operatorname{PSL}_2(\mathbb{F}_q), \quad g = \frac{1}{2}(q-1).$$

Clearly, either q = 5, g = 2 or q = 7, g = 3. In both cases $g = \dim(X)$, the group G is simple and $\operatorname{GL}(g - 1, \mathbb{F}_2)$ is solvable. It follows that every homomorphism from G to $\operatorname{GL}(g - 1, \mathbb{F}_2)$ is trivial. It follows from Lemma 3.2 that the image of $\operatorname{Gal}(K)$ in $\operatorname{Aut}(X_2)$ is isomorphic to G and the corresponding faithful representation

$$\bar{\rho}: G \longrightarrow \operatorname{Aut}(X_2) \cong \operatorname{GL}(2g, \mathbb{F}_2)$$

satisfies $\operatorname{End}_G X_2 = \mathbb{F}_2$.

Let us assume that X is supersingular. We need to get a contradiction.

Applying Theorem 3.3, we conclude that there exist a finite perfect group G_1 and a surjective homomorphism

$$\pi_1: G_1 \longrightarrow G = \mathrm{PSL}_2(\mathbb{F}_q)$$

enjoying the following properties:

- (i) either $G_1 \cong G$ or $Z_1 = \ker(\pi_1)$ is a central subgroup of order 2 in G_1 ;
- (ii) there exists a direct summand of $\mathbb{Q}[G_1]$ isomorphic to $M_q(\mathbb{H}_p)$).

The well-known description of central extensions of $\text{PSL}_2(\mathbb{F}_q)$ when q is an odd prime [4, §4.15, Prop. 4.233] implies that either $G_1 = \text{PSL}_2(\mathbb{F}_q)$ or $G_1 = \text{SL}_2(\mathbb{F}_q)$. Applying Lemma 3.4, we arrive to the desired contradiction. \Box

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE